用python函数写斐波那契数列非递归_斐波那契数列与Python的尾递归蹦床 连载【1】...

本文探讨了使用Python计算斐波那契数列的不同方法,包括非递归迭代解法、递归解法和尾递归优化的解法。通过分析和计时,展示了非递归解法的效率,以及尾递归如何通过蹦床(Trampoline)装饰器实现栈空间的优化。文章中提供了详细的代码示例,并对比了不同方法的时间性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用程序算斐波那契数列最常见的就是迭代与递归算法。

为了评价各算法程序效率如何

安装 profiler 来计时和能看到每行的运行次数

先在系统下输入命令pip install line_profiler安装

使用也很简单,在要计时的函数定义前加上@profile这个装饰符

然后在系统下输入命令kernprof -l -v 被计时的源程序.py

开始看第一个程序,输入参数n算第n项的Fibonacci数。以下皆是在Python 3.7环境下运行

1. 非递归的迭代解法

def Fibonacci_sequence_01 (n: int) -> int: #参数n是表示求第n项Fibonacci数

'返回单项的for迭代解法'

assert isinstance(n, int), 'n is an error of non-integer type.'

if n>=2:

prev_num, current_num = 0, 1

for i in range(2, n+1):

prev_num, current_num = current_num, prev_num+current_num

return current_num

elif n==1:

return 1

elif n==0:

return 0

else:

return NoneFibonacci_sequence_01(1200)

用算到第1200项Fibonacci数来测量下用时

在我的电脑上Total time: 0.002855秒

2. 典型的递归解法,算法可读性很好

def Fibonacci_sequence_02 (n: int) -> int: #参数n是表示求第n项Fibonacci数

assert isinstance(n, int), 'n is an error of non-integer type.'

def Calculate_Fibonacci_sequence (n: int) -> int:

'返回单项的递归解法'

if n>=2:

return Calculate_Fibonacci_sequence(n-1) + Calculate_Fibonacci_sequence(n-2)

elif n==1:

return 1

elif n==0:

return 0

if n>=0:

Calculate_Fibonacci_sequence(n)

else:

return None

然而,时间复杂度是:O(1.618 ^ n),没有实用价值。这个时间复杂度的详解见“算法的时间复杂度”这篇文章

3. 尾递归解法

递归解法的一个缺点是递归调用会一层一层压栈,占用栈空间达O(n)。特别是Python默认只设1000层,超过就抛出异常了

尾递归算法相当于迭代的变形,理论上尾递归不需要保留调用前信息,栈空间只需要O(1)。但是Python没有针对尾递归形式做识别,尾递归调用时还是有一层一层压栈动作,超出默认栈深度就不行了。对于不支持尾递归优化的语言,这时要用一个叫“蹦床(Trampoline)”的技巧

“蹦床”也就是对递归函数进行包装,蹦床拦截了传给递归函数的参数,递归函数代码的加载过程都透过这个蹦床。每次的递归调用,实际都被蹦床转化为蹦床去拿拦截的参数调用一次递归函数,这样栈空间占用一直为O(1)

来看装饰器样式,样子如:先对尾递归函数加上装饰器

@proper_tail_call

def Fibonacci_sequence(n):

然后使用时就是原样不变的函数调用样式

Fibonacci_sequence(n)

好了,下面就是完整的尾递归装饰器及尾递归解法斐波那契数

import functools

import inspect

class TailCallException(Exception):

def __init__(self, *args, **kwargs):

self.args = args

self.kwargs = kwargs

def proper_tail_call(func):

'用于return式尾递归的蹦床装饰器代码。使用方法:在定义尾递归函数语句前一行写装饰器“@proper_tail_call”'

@functools.wraps(func)

def wrapper(*args, **kwargs):

frame = inspect.currentframe()

if frame.f_back and frame.f_back.f_back and frame.f_code ==frame.f_back.f_back.f_code: #先判断当前是否为递归调用(递归的话是_wrapper->被装饰函数->_wrapper),再判断是否存在前级和前前级调用

raise TailCallException(*args, **kwargs)

else:

while True:

try:

return func(*args, **kwargs)

except TailCallException as e:

args = e.args

kwargs = e.kwargs

return wrapper

def Fibonacci_sequence_03 (n: int) -> int: #参数n是表示求第n项Fibonacci数

assert isinstance(n, int), 'n is an error of non-integer type.'

@proper_tail_call

def Calculate_Fibonacci_sequence (n: int, prev_num: int =0, current_num: int =1) -> int:

'返回单项的return式尾递归解法'

if n>=2:

return Calculate_Fibonacci_sequence(n-1, current_num, prev_num+current_num)

elif n==1:

return current_num

if n>=1:

return Calculate_Fibonacci_sequence (n)

elif n==0:

return 0

else:

return NoneFibonacci_sequence_03(1200)

还是用算到第1200项Fibonacci数来测量下用时,Total time: 0.011484秒

未完待续……fss.sosei:斐波那契数列与Python的尾递归蹦床 连载【2】​zhuanlan.zhihu.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值