算法的稳定性matlab,基于MATLAB地震反应谱数值算法的稳定性和精度分析

本文分析了基于MATLAB的地震反应谱数值算法的稳定性和精度,探讨了中心差分法、Wilson-θ法、Houbolt法、线性加速度法和Newmark-β法等,并通过实例验证了各种算法在实际计算中的表现,为工程实践中选择合适的积分算法提供指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于MATLAB地震反应谱数值算法的稳定性和精度分析

摘要:地震反应谱是进行结构抗震分析与设计的重要工具,反应谱的计算在反应谱法和时域逐步积分方法中有重要地位,引起了学者的重视和广泛研究。而对计算方法优劣的评定常取决于其计算的耗时、稳定性和精度等因素。本文基于数值算法的相关研究及应用现状,以MATLAB为平台,建立数值算法在不同影响因素下的三维图形,并结合理论进行对比分析。通过算例进一步分析验证,得出不同数值算法在实际计算中的表现,为工程实际计算中选取哪种积分算法更为合适提供参考。

关键词:地震反应谱;时域逐步积分算法;稳定性和精度;MATLAB

1、地震反应谱的基本假定

地震反应谱基于的三个基本假设[1]:

(1)结构物所处的地面假定为刚性面,认为体系各质点的运动是完全一致的。

(2)强震观测仪的记录为地面运动的过程。

(3)结构体系不能是双或多质点体系,必须是单质点体系;同时应是弹性体系状态。

这里所谓的单自由度体系结构,就是用无量刚的弹性杆件支承于地面上,将结构体

系中参与振动的质量用一点表示。同时,假定结构振动和地面运动不发生扭转,只是水平平移运动并且是单方向的。

2、基于MATLAB地震反应谱数值算法的稳定性和精度分析

2.1 概述

目前MATLAB地震反应谱数值理论算法主要有中心差分法[2]、Wilson-法、Houbolt法、线性加速度法及Newmark-法等,理论算法主要是以求解线性结构体系动力方程时所表现出的特性作为数值算法优劣的评价依据[3],但是在实际工程运用中,人们常常凭借经验来判定选取较为合适的积分方法。

随着工程问题越来越复杂,在对大型复杂结构的结构动力反应分析更为复杂,要求高效率计算情况下获得较精确地计算结果。然而各计算方法的精度和稳定性对结构动力反应分析的发

————————————

E-mail:skyuanyan@http://www.doczj.com/doc/080c194e0c22590102029d9f.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值