support vector regression与 kernel ridge regression

本文深入分析了在回归任务中引入内核技巧的方法,特别是如何将其应用于岭回归中,以期使β参数更加稀疏。通过引入QP工具,文章进一步探讨了将内核技巧与支持向量回归相结合的可能性,旨在优化预测模型的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前一篇,我们将SVM与logistic regression联系起来,这一次我们将SVM与ridge regression(之前的linear regression)联系起来。

 

(一)kernel ridge regression

之前我们之前在做的是linear regression,现在我们希望在regression中使用kernel trick。

image

image

下面是linear versus kernel:

image

至此,kernel ridge regression结束。但是,这里的β与kernel logistic regression中的β存在同样的问题:β大多不是0。具体例子如下:

image

 

(二) support vector regression

前一篇文章中,有两个思路:1.把SVM与logistic regression混合起来用(先运行SVM,后运行logistic regression);2.将kernel trick加到logistic regression中;

这一次,我们已经完成了上述思路2:将kernel trick加到ridge regression中;却不打算完成上述的思路1了。

为什么不完成思路1了呢?一是因为课程中没有讲;二是把SVM与logistic regression混合起来得到的probabilistic SVM,我没有理解这一算法有什么好处

我们现在希望:将kernel ridge regression中的β变得很sparse。这就要借助QP工具。

 

现在错误衡量方式为:

image

这种衡量方式得到的nonlinear error,跟SVM的nonlinear error形式上很相似。所以可以使用SVM的求解方法。

image

转化为SVM问题:

image

image

image

image

image

转载于:https://www.cnblogs.com/wangyanphp/p/5505628.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值