Fixing:insert_modules not found

本文记录了解决Linux系统中使用opkg安装特定软件包时出现panic的问题。通过将某些脚本文件中的insert_modules命令替换为load_modules,成功解决了安装过程中出现的一系列错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 

搞linux的最怕的就是panic。满屏的报错不知头绪,百度出来的还都是抄来抄去的垃圾。

 

我遇到的错误已经解决,所以不想再看到报错了。。google出来两个没有上下文的文本,因为和他们差不多,在下面贴出来供百度用户们搜索。。:

 

解决办法是:打开/usr/lib/opkg/info/XXX.postinst  把里面第四行改成load_modules。Enjoy!

 

opkg install qos-scripts   #(whatever)
Package qos-scripts (1.2.1-6) installed in root is up to date.
Configuring kmod-sched-core.
//usr/lib/opkg/info/kmod-sched-core.postinst: line 4: insert_modules: not found
Configuring kmod-ipt-conntrack-extra.
//usr/lib/opkg/info/kmod-ipt-conntrack-extra.postinst: line 4: insert_modules: n ot found
Configuring kmod-sched-connmark.
//usr/lib/opkg/info/kmod-sched-connmark.postinst: line 4: insert_modules: not fo und
Configuring kmod-lib-textsearch.
//usr/lib/opkg/info/kmod-lib-textsearch.postinst: line 4: insert_modules: not fo und
Configuring kmod-ipt-filter.
//usr/lib/opkg/info/kmod-ipt-filter.postinst: line 4: insert_modules: not found
Configuring kmod-ifb.
//usr/lib/opkg/info/kmod-ifb.postinst: line 4: insert_modules: not found
Configuring kmod-ipt-ipopt.
//usr/lib/opkg/info/kmod-ipt-ipopt.postinst: line 4: insert_modules: not found
Collected errors:
* pkg_run_script: package "kmod-sched-core" postinst script returned status 12 .
* opkg_configure: kmod-sched-core.postinst returned 127.
* pkg_run_script: package "kmod-ipt-conntrack-extra" postinst script returned tatus 127.
* opkg_configure: kmod-ipt-conntrack-extra.postinst returned 127.
* pkg_run_script: package "kmod-sched-connmark" postinst script returned statu 127.
* opkg_configure: kmod-sched-connmark.postinst returned 127.
* pkg_run_script: package "kmod-lib-textsearch" postinst script returned statu 127.
* opkg_configure: kmod-lib-textsearch.postinst returned 127.
* pkg_run_script: package "kmod-ipt-filter" postinst script returned status 12 .
* opkg_configure: kmod-ipt-filter.postinst returned 127.
* pkg_run_script: package "kmod-ifb" postinst script returned status 127.
* opkg_configure: kmod-ifb.postinst returned 127.
* pkg_run_script: package "kmod-ipt-ipopt" postinst script returned status 127
* opkg_configure: kmod-ipt-ipopt.postinst returned 127.

转载于:https://www.cnblogs.com/zhchngzng/p/3722444.html

TebLocalPlannerROS: odom_topic: odom # Trajectory teb_autosize: True dt_ref: 0.3 dt_hysteresis: 0.1 max_samples: 800 global_plan_overwrite_orientation: false allow_init_with_backwards_motion: False max_global_plan_lookahead_dist: 2.5 global_plan_viapoint_sep: 0.5 global_plan_prune_distance: 1 exact_arc_length: True feasibility_check_no_poses: 3 publish_feedback: False # Robot max_vel_x: 0.5 max_vel_x_backwards: 0.3 max_vel_y: 0.4 max_vel_theta: 1.0 acc_lim_x: 0.35 acc_lim_y: 0.3 acc_lim_theta: 0.8 min_turning_radius: 0.0 # diff-drive robot (can turn on place!) footprint_model: type: "circular" radius: 0.19 # GoalTolerance xy_goal_tolerance: 0.1 yaw_goal_tolerance: 0.05 free_goal_vel: False complete_global_plan: True # Obstacles min_obstacle_dist: 0.1 # This value must also include our robot radius, since footprint_model is set to "point". inflation_dist: 0.15 include_costmap_obstacles: True costmap_obstacles_behind_robot_dist: 1.5 obstacle_poses_affected: 15 dynamic_obstacle_inflation_dist: 0.2 include_dynamic_obstacles: True costmap_converter_plugin: "" costmap_converter_spin_thread: True costmap_converter_rate: 5 # Optimization no_inner_iterations: 5 no_outer_iterations: 4 optimization_activate: True optimization_verbose: False penalty_epsilon: 0.05 obstacle_cost_exponent: 4 weight_max_vel_x: 2 weight_max_vel_theta: 1 weight_acc_lim_x: 1 weight_acc_lim_theta: 1 weight_kinematics_nh: 200 weight_kinematics_forward_drive: 10000 weight_kinematics_turning_radius: 100 weight_optimaltime: 1 # must be > 0 weight_shortest_path: 0 weight_obstacle: 50 weight_inflation: 0.1 weight_dynamic_obstacle: 10 weight_dynamic_obstacle_inflation: 0.2 weight_viapoint: 1 weight_adapt_factor: 2 # Homotopy Class Planner enable_homotopy_class_planning: True enable_multithreading: True max_number_classes: 4 selection_cost_hysteresis: 1.0 selection_prefer_initial_plan: 0.9 selection_obst_cost_scale: 100.0 selection_alternative_time_cost: False roadmap_graph_no_samples: 15 roadmap_graph_area_width: 5 roadmap_graph_area_length_scale: 1.0 h_signature_prescaler: 0.5 h_signature_threshold: 0.1 obstacle_heading_threshold: 0.45 switching_blocking_period: 0.0 viapoints_all_candidates: True delete_detours_backwards: True max_ratio_detours_duration_best_duration: 3.0 visualize_hc_graph: False visualize_with_time_as_z_axis_scale: False # Recovery shrink_horizon_backup: True shrink_horizon_min_duration: 10 oscillation_recovery: True oscillation_v_eps: 0.1 oscillation_omega_eps: 0.1 oscillation_recovery_min_duration: 10 oscillation_filter_duration: 10 修改
最新发布
07-02
<think>我们正在解决TEB局部规划器无法规划到目标点的问题。根据之前的讨论,可能的原因包括目标容差参数、速度约束、障碍物设置等。现在,用户明确要求调整TEB参数来解决这个问题。我们将参考提供的引用资料,特别是引用[1]和引用[4]中关于参数调试的内容。关键调整参数方向:1.目标点容差参数:确保机器人在到达目标点附近时才停止。2.终端速度约束:允许机器人在目标点处以非零速度到达,避免提前减速。3.轨迹优化参数:增加优化迭代次数,确保轨迹能够到达目标点。4.障碍物处理:调整与障碍物相关的参数,避免目标点被误判为障碍物。具体参数调整建议:1.**目标容差参数**:在TEB中,我们可以通过`xy_goal_tolerance`和`yaw_goal_tolerance`设置目标点的位置和角度容差。但注意,TEB还有一个参数`weight_goal_orientation`,它控制朝向目标的权重,如果设置过大,可能会使机器人在未到达目标位置时就调整方向而停止。建议先检查容差参数是否过小(导致无法达到)或过大(导致提前停止)?实际上,在TEB中,容差参数通常由move_base的全局参数设置,但TEB也有自己的相关参数。2. **终端速度约束**:TEB有一个参数`force_reinit_new_goal_desired`(默认为false),当设置为true时,可以强制在收到新目标时重新初始化,可能会帮助到达目标点。另外,确保在目标点处允许非零速度,可以通过以下参数:```yamlTebLocalPlannerROS:feasibility_checker:enable_orientation_fixing:false#禁用目标点方向强制修正(引用[1]提到)max_vel_x:0.5#最大线速度max_vel_theta:1.0#最大角速度acc_lim_x:0.5#线加速度限制acc_lim_theta:1.0#角加速度限制```同时,调整目标点速度约束:```yamlgoal_feasibility_checker:enable_orientation_fixing: false#引用[1]提到,禁用方向约束```3.**轨迹优化参数**:增加轨迹优化的迭代次数和样本数,让规划器有更多机会找到到达目标点的轨迹。```yamlTebLocalPlannerROS:max_samples:1000#增加样本数(默认500)max_iterations:500#增加优化迭代次数(默认100)max_iterations_after_initial_plan:200#初始规划后的最大迭代次数(默认50)```4. **障碍物参数**:确保目标点不在障碍物中,调整障碍物权重和膨胀半径。```yamlTebLocalPlannerROS:inflation_layer:inflation_radius:0.3#膨胀半径,减小以缩小障碍物影响范围weight_obstacle:50#障碍物权重,如果过大,可能会避开目标点附近的区域,可适当降低```另外,TEB的参数`min_obstacle_dist`(最小障碍物距离)设置过大会导致机器人远离目标点,可以适当减小:```yamlmin_obstacle_dist:0.25#默认0.2,如果目标点附近有障碍物,可以稍微增大,但不要过大```5.**其他参数**:引用[2]提到`delete_detours_backwards`参数(默认为true),它会删除向后绕行的路径。如果目标点在机器人后方,这个参数可能会阻止规划到目标点。可以尝试设置为false:```yamldelete_detours_backwards: false```6. **全局路径与局部路径的协调**:TEB规划器需要参考全局路径。如果全局路径没有到达目标点,那么TEB也不会到达。确保全局规划器(如global_planner)能够规划到目标点。7. **目标点不可达的检测**:TEB有一个参数`allow_init_with_backwards_motion`(默认为true),允许初始轨迹包含向后运动。如果目标点在机器人后方,开启这个参数可能有助于规划。8.**时间弹性参数**:TEB的核心是时间弹性带,我们可以调整与时间相关的参数:```yamldt_ref:0.3#时间离散的参考值,增大可能使轨迹更平滑dt_hysteresis:0.1#时间离散滞后,避免频繁变化```9. **考虑使用homotopy_class_planning**:引用[3]提到,开启同伦类规划(homotopy_class_planning)可以同时考虑多条路径,增加到达目标点的可能性。```yamlenable_homotopy_class_planning: true```10.**目标点朝向处理**:如果目标点朝向不重要,可以降低朝向的权重:```yamlweight_goal_orientation:10.0#默认20,降低以使位置精度优先```调试步骤:1.在RViz中观察TEB规划出的轨迹(显示`/move_base/TebLocalPlannerROS/teb_poses`),看轨迹终点是否在目标点。2.检查目标点是否在代价地图中被标记为障碍物(在RViz中查看local_costmap)。3.逐步调整参数,每次调整一个或几个参数,观察效果。如果问题仍然存在,可能需要检查全局规划器和代价地图的配置。根据引用[4](TEB参数调试技巧),我们还需要注意:-TEB对动态障碍物处理较好,但静态环境中需要调整障碍物权重和最小距离。-在狭窄通道中,可能需要调整`min_obstacle_dist`和`inflation_radius`。最后,给出一个综合的参数调整示例(放在`teb_local_planner_params.yaml`中): ```yamlTebLocalPlannerROS:#目标容差(通常由move_base设置,但这里TEB也有相关设置)xy_goal_tolerance:0.05yaw_goal_tolerance:0.1#终端速度约束feasibility_checker:enable_orientation_fixing: false#轨迹优化max_samples:1000max_iterations:500max_iterations_after_initial_plan:200#障碍物min_obstacle_dist:0.25weight_obstacle:50inflation_layer:inflation_radius:0.3#其他delete_detours_backwards:falseallow_init_with_backwards_motion: trueenable_homotopy_class_planning: trueweight_goal_orientation:10.0```注意:以上参数需要根据实际机器人和环境进行调整。相关问题:1.TEB局部规划器参数调整中,哪些参数对规划到目标点影响最大?2.如何通过RViz观察TEB规划器的轨迹和障碍物信息?3.TEB规划器在目标点附近振荡如何解决?4.如何测试TEB规划器的参数调整效果?</think>### 调整TEB局部规划器参数解决无法到达目标点问题 针对TEB局部规划器无法到达目标点的问题,以下是关键参数调整策略,结合引用资料中的技术要点[^1][^4]: #### 1. **目标点容差与速度约束调整**(核心问题) ```yaml TebLocalPlannerROS: # 降低目标点容差阈值 xy_goal_tolerance: 0.05 # 位置容差(米),建议0.05-0.1 yaw_goal_tolerance: 0.1 # 角度容差(弧度),建议0.1-0.2 # 解除终点速度限制 goal_feasibility_checker: enable_orientation_fixing: false # 禁用朝向强制修正[^1] # 提高终点速度 max_vel_x: 0.5 # 最大线速度(m/s) max_vel_theta: 1.0 # 最大角速度(rad/s) ``` #### 2. **轨迹优化参数增强** ```yaml TebLocalPlannerROS: # 增加优化迭代次数 max_samples: 800 # 轨迹样本数(默认500)[^1] max_iterations: 200 # 优化迭代次数(默认100) # 禁用向后绕行检测 delete_detours_backwards: false # 防止丢弃向后路径[^2] # 终点附近优化 feasibility_check_no_poses: 5 # 跳过终点附近5个位姿的碰撞检测 ``` #### 3. **同伦类规划启用**(复杂环境) ```yaml TebLocalPlannerROS: enable_homotopy_class_planning: true # 启用多路径规划[^3] selection_obst_cost_scale: 1.0 # 障碍物代价权重 selection_alternative_time_cost: true # 时间代价替代方案 ``` #### 4. **障碍物处理优化** ```yaml TebLocalPlannerROS: # 降低障碍物影响 min_obstacle_dist: 0.2 # 最小障碍物距离(米) weight_obstacle: 50 # 障碍物代价权重(默认100) # 调整膨胀半径 inflation_layer: inflation_radius: 0.3 # 膨胀半径≤0.5m[^4] ``` #### 调试验证步骤: 1. **RViz可视化**: ```bash roslaunch teb_local_planner test_optim_node.launch # 启动测试节点[^3] ``` - 观察`/move_base/TebLocalPlannerROS/teb_poses`话题 - 检查轨迹终点与目标点的偏差 2. **实时参数调整**: ```bash rosparam set /move_base/TebLocalPlannerROS/xy_goal_tolerance 0.05 rosservice call /move_base/clear_costmaps # 清除代价地图 ``` 3. **诊断工具**: ```bash rostopic echo /move_base/status # 查看规划状态 rostopic echo /move_base/feedback # 获取实时反馈 ``` > **关键原理**:TEB通过时间弹性带优化轨迹[^1],当`xy_goal_tolerance`过大时,规划器会提前判定到达目标;`enable_orientation_fixing`强制机器人在终点精确朝向,可能导致提前停止[^4]。 #### 参数调整优先级: 1. `xy_goal_tolerance` → 2. `enable_orientation_fixing` → 3. `max_samples` → 4. `delete_detours_backwards` 如果问题持续,检查全局规划器是否生成有效路径,并确保目标点不在代价地图的未知区域(`unknown_cost_value: -1`)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值