乘法原理的例题和答案_乘法原理的例题

本文通过多个例题详细解释了乘法原理在计数问题中的应用,涉及三位数的构成、不重复数字的组合、偶数个数的计算等,并提供了多种解题思路,帮助理解数学原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

展开全部

例如,从A城到B城中间必须经过C城,从A城到C城共有62616964757a686964616fe58685e5aeb9313333613030363条路线(设为a,b,c),从C城到B城共有2条路线(设为m,t),那么,从A城到B城共有3×2=6条路线,它们是:

am,at,bm,bt,cm,ct.点击此处添加图片说明

下面我们通过一些例子来说明这两个原理在计数中的应用. 利用数字1,2,3,4,5共可组成

⑴多少个数字不重复的三位数?

⑵多少个数字不重复的三位偶数?

⑶多少个数字不重复的偶数?

解:⑴百位数有5种选择;十位数有4种选择;个位数有3种选择.所以共有

5×4×3=60

个数字不重复的三位数.

⑵ 先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有

2×4×3=24

个数字不重复的三位偶数.

⑶ 分为5种情况:

一位偶数,只有两个:2和4.

二位偶数,共有8个:12,32,42,52,14,24,34,54.

三位偶数由上述⑵中求得为24个.

四位偶数共有2×(4×3×2)=48个.括号外面的2表示个位数有2种选择(2或4).

五位偶数共有2×(4×3×2×1)=48个.

由加法原理,偶数的个数共有

2+8+24+48+48=130. 从1到300的自然数中,完全不含有数字3的有多少个?

解法1: 将符合要求的自然数分为以下三类:

⑴一位数,有1,2,4,5,6,7,8,9共8个.

⑵二位数,在十位上出现的数字有1,2,4,5,6,7,8,9 8种情形,在个位上出现的数字除以上八个数字外还有0,共9种情形,故二位数有8×9=72个.

⑶三位数,在百位上出现的数字有1,2两种情形,在十位、个位上出现的数字则有0,1,2,4,5,6,7,8,9九种情形,故三位数有

2×9×9=162个.

因此,从1到300的自然数中完全不含数字3的共有

8+72+162=242个.

解法2: 将0到299的整数都看成三位数,其中数字3

不出现的,百位数字可以是0,1或2三种情况.十位数字与个位数字均有九种,因此除去0共有

3×9×9-1=242(个). 在小于10000的自然数中,含有数字1的数有多少个?

解: 不妨将1至9999的自然数均看作四位数,凡位数不到四位的自然数在前面补0.使之成为四位数.

先求不含数字1的这样的四位数共有几个,即有0,2,3,4,5,6,7,8,9这九个数字所组成的四位数的个数.由于每一位都可有9种写法,所以,根据乘法原理,由这九个数字组成的四位数个数为

9×9×9×9=6561,

所以比10000小的不含数字1的自然数的个数是6561,于是,小于10000且含有数字1的自然数共有9999-6561=3438个.

纠正一下:最后一步的答案应是10000-6561=3439 ,因为小于10000的自然数有10000个(包括0)而非9999个。 求正整数1400的正因数的个数.

解: 因为任何一个正整数的任何一个正因数(除1外)都是这个数的一些质因数的积,因此,我们先把1400分解成质因数的连乘积

1400=2×2×2×5×5×7

所以这个数的任何一个正因数都是由2,5,7中的n个相乘而得到(有的可重复).于是取1400的一个正因数,这件事情是分如下三个步骤完成的:

⑴ 取2×2×2的正因数是1,2,2×2,2×2×2,共3+1种;『注:1表示取0个;2表示取1个2;2×2表示取2个2;2×2×2表示取3个2.下面同理』

⑵ 取5×5的正因数是1,5,5×5,共2+1种;

⑶ 取7的正因数是1,7,共1+1种.

所以1400的正因数个数为

(3+1)×(2+1)×(1+1)=24.

说明: 利用本题的方法,可得如下结论:

若将正整数a分解成质因数pi(i=1,2,…,r)的连乘积时,其中质因数pi的个数是ai(i=1,2,…,r),则正整数a的不同的正因数的个数是

(a1+1)×(a2+1)×…×(ar+1). 求五位数中至少出现一个6,且能被3整除的数的个数.

解答如下:

⑴ 从左向右计,如果最后一个6出现在第5位,即a5=6,那么a2,a3,a4可以是0,1,2,3,4,5,6,7,8,9这十个数字之一,但a1不能是任意的,它是由a2+a3+a4+a5被3除后的余数所决定.因此,为了保证a1+a2+a3+a4+a5能被3整除,a1只有3种可能,根据乘法原理,5位数中最后一位是6,而被3整除的数有

3×10×10×10=3000(个).

⑵ 最后一个6出现在第四位,即a4=6,于是a5只有9种可能(因为a5不能等于6),a2,a3各有10种可能,为了保证a1+a2+a3+a4+a5被3整除,a1有3种可能.根据乘法原理,属于这一类的5位数有

3×10×10×9=2700(个).

⑶ 最后一个6出现在第3位,即a3=6,被3整除的数应有

3×10×9×9=2430(个).

⑷ 最后一个6出现在第2位,即a2=6,被3整除的数应有

3×9×9×9=2187(个).

⑸ a1=6,被3整除的数应有

3×9×9×9=2187(个).

根据加法原理,5位数中至少出现一个6而被3整除的数应有

3000+2700+2430+2187+2187=12504(个). 在6×6的棋盘上剪下一个由四个小方格组成的凸字形,有多少种不同的剪法?

解: 我们把凸字形上面那个小方格称为它的头,每个凸字形有并且只有一个头.

凸字形可以分为两类:第一类凸字形的头在棋盘的边框,但是棋盘的四个角是不能充当凸字形的头的.于是,边框上(不是角)的小方格共有4×4=16个,每一个都是一个凸字形的头,所以,这类凸字形有16个.

第二类凸字形的头在棋盘的内部,棋盘内部的每一个小方格可以作为4个凸字形的头(即头朝上,头朝下,头朝左,头朝右),所以,这类凸字形有

4×(4×4)=64(个).

由加法原理知,有16+64=80种不同的凸字形剪法.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值