Crackme009

Crackme009 的逆向分析

1.程序观察

 

 

 009 和 008 相比,多出来了一个输入 Name 的输入框。

分别输入 name 和 key,可以看到错误提示:

 

 

 

 2.简单查壳

 

 

可以看到,程序没有壳,和 008 一样还是使用 VB 编写的。

 

 

3.程序分析

使用 OD 载入程序,搜索字符串

 

 

 双击跟进程序,向上查找,和 008 一样

 

 

 可以看到有一个比较的函数,一个 test 语句加一个跳转指令,还有正确提示的字符串。

我们在比较函数处下断点,运行程序,程序断在了断点处。
继续运行程序,可以看到 比较函数运行完,EAX 寄存器的值为 0

我们将 EAX 寄存器的值修改为 1,运行程序

 

 

 

 

 

 可以看到,程序出现正确提示,可以推测该比较函数就是关键点。

再次运行到该函数,查看参数

在这里有一个关于 VB 的知识点,不知道的话这个程序很难分析出来。
VB 的变量都类似于一个结构体。变量的前 8 个字节,存放的是该变量的数据类型信息。第 9 个字节开始存放的是该变量的真正地址。也就是说“首地址+8”才是该变量的真正地址。

分别查看两个参数:

第一个参数

 

 

 

 

 

 第二个参数

 

 

 

 

 

 可以看出来,第一个参数是我们输入的 key。经过测试,发现第二个参数就是正确的 key。

那么这个 key 是哪里来的呢?我们向上找。

发现了一个循环

 

 

 

 

 

这个循环其实很简单:

  1. 首先计算出我们输入的 name 的长度
  2. name 的长度就是循环的次数
  3. 依次取 name 的字符:第一次取第一个字符,第二次取第二个字符
  4. 将字符转化为 ascii 码
  5. 然后相加

循环结束,程序又对循环得到的值进行了加工

程序先把得到的值,和 0x499602D2 进行相乘
然后依次使用"-"替换掉了计算结果的第4位和第9位,最后得到的值就是真正的 Key。

 

4.写出注册机

#include <stdio.h>
#include <string.h>

int Key()
{
    char szName[20] = { 0 };
    char szKey[30] = { 0 };
    int NameLen = 0;
    __int64 Result = 0;

    printf("请输入用户名:");
    scanf_s("%s", szName, 20);

    NameLen = strlen(szName);
    for (int i = 0; i < NameLen; i++)
    {
        Result += szName[i];
    }
    Result *= 1234567890;

    sprintf(szKey, "%I64d", Result);
    szKey[3] = '-';
    szKey[8] = '-';

    printf("%s", szKey);

    return 0;
}


int main(int argc, char* argv[])
{
    Key();
    return 0;
}

 

 

相关文件在我的 Github:https://github.com/UnreachableLove/160-Crackme/tree/master/Crackme009

 

转载于:https://www.cnblogs.com/white-album2/p/11493919.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值