决策树模型 ID3/C4.5/CART算法比较

本文介绍了决策树模型的优缺点,并详细比较了ID3、C4.5和CART三种算法,讨论了它们在处理离散和连续特征上的差异,以及如何通过信息熵增益、信息增益比率和基尼指数来选择最佳分割特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      决策树模型在监督学习中非常常见,可用于分类(二分类、多分类)和回归。虽然将多棵弱决策树的Bagging、Random Forest、Boosting等tree ensembel 模型更为常见,但是“完全生长”决策树因为其简单直观,具有很强的解释性,也有广泛的应用,而且决策树是tree ensemble 的基础,值得好好理解。一般而言一棵“完全生长”的决策树包含,特征选择、决策树构建、剪枝三个过程,这篇文章主要是简单梳理比较ID3、C4.5、CART算法。《统计学习方法》中有比较详细的介绍。

一、决策树的优点和缺点

    优点:

  1. 决策树算法中学习简单的决策规则建立决策树模型的过程非常容易理解,
  2. 决策树模型可以可视化,非常直观
  3. 应用范围广,可用于分类和回归,而且非常容易做多类别的分类
  4. 能够处理数值型和连续的样本特征

    缺点:

  1. 很容易在训练数据中生成复杂的树结构,造成过拟合(overf
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值