Path Queries CF

本文介绍了一种解决树上路径问题的算法,通过离线加边和并查集维护联通块来计算给定权重下所有顶点对的最大边权不超过该权重的二元组数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are given a weighted tree consisting of n vertices. Recall that a tree is a connected graph without cycles. Vertices ui and vi are connected by an edge with weight wi.

You are given m queries. The i-th query is given as an integer qi. In this query you need to calculate the number of pairs of vertices (u,v) (u<v) such that the maximum weight of an edge on a simple path between u and v doesn't exceed qi.

题意: 给出一个数问都多少个二元组满足 之间的最大边不超过这个数的


这个显然满足单调性
所以我们考虑离线 由小到大 加边
答案的贡献为 每个联通 块 size size*(size-1)/2;
并查集维护联通块的点的个数

//
#include<bits/stdc++.h>
using namespace std;
#define maxnn 300000
#define ll long long
ll n,m;
struct node 
{
 
    ll st,en;
    ll val;
}edge[maxnn];
bool cmp(node a,node b)
{
    return a.val<b.val;
}
ll tot=0;
 
struct gr{
 
    ll id,va;
 
}gra[maxnn];
bool cmp1(gr a,gr b)
{
    return a.va<b.va;
}
ll f[maxnn];
ll ask[maxnn];
ll siz[maxnn];
ll gf(ll v)
{
    return f[v]==v?v:f[v]=gf(f[v]);
}
int main()
{
    cin>>n>>m;
    ll x,y,z;
    for(int i=1;i<n;i++)
    {
        scanf("%lld%lld%lld",&x,&y,&z);
        edge[++tot].st=x;
        edge[tot].en=y;
        edge[tot].val=z;
    }
    sort(edge+1,edge+1+tot,cmp);
    for(int i=1;i<=m;i++)
    {
        scanf("%lld",&gra[i].va);
        gra[i].id=i;
    }
    sort(gra+1,gra+1+m,cmp1);
    ll sec=0;
    ll j=1;
    ll tmp=0; 
    for(int i=1;i<=n;i++) f[i]=i,siz[i]=1;
    for(int i=1;i<=m;i++)
    {
        int tr=gra[i].va;
        for(;j<=tot;j++)
        {
            if(edge[j].val<=tr)
            {
                if(gf(edge[j].st)!=gf(edge[j].en))
                {       
                        tmp-=(siz[gf(edge[j].en)]*(siz[gf(edge[j].en)]-1)/2);
                        tmp-=(siz[gf(edge[j].st)]*(siz[gf(edge[j].st)]-1)/2);
                        siz[gf(edge[j].en)]+=siz[gf(edge[j].st)];
                        tmp+=(siz[gf(edge[j].en)]*(siz[gf(edge[j].en)]-1)/2);
                        f[gf(edge[j].st)]=gf(edge[j].en);
                }
            }
            else break;
        }
        j--;
 
                ask[gra[i].id]=tmp;
  
    }
     for(int i=1;i<=m;i++)
     {  
        cout<<ask[i]<<" ";
     }
}

转载于:https://www.cnblogs.com/OIEREDSION/p/11446212.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值