三元环计数

本文介绍了一种高效的算法来计算无向图中由三个点构成的环的数量。通过为图中的边定向,并利用点的度数进行优化,该算法实现了O(m√m)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三元环计数

Tags:图论

zybl

求解无向图中三个点构成的环的个数

将边定向,由度数小的点指向大的,相同则指向编号大的
枚举每条边\(x,y\),将所有与\(x\)相连的点打上标记,再枚举与\(y\)相连的点,如果有标记则算进答案

复杂度是\(O(m\sqrt{m})\)

因为每个点的出度不超过\(\sqrt{m}\)
证明:对于度数小于\(\sqrt{m}\)的点显然,度数大于\(\sqrt{m}\)的点出度一定指向度数大于\(\sqrt{m}\)的点,而度数大于\(\sqrt{m}\)的点不超过\(\sqrt{m}\)个,所以每个点的出度都小于等于\(\sqrt{m}\)

转载于:https://www.cnblogs.com/xzyxzy/p/9241685.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值