生成排序

/**
 * -*- coding : utf-8 -*-
 * @Author : huangshengjianng
 * @Email : 1005542693@qq.com
 * @Date : 2016-09-08 16:50
 * @Last Modified Date : 2016-10-27 10:31        
 * @FileName : 生成排序.cpp
 */

/*生成排序first
    应用场景 : 计算概率,如彩票的中奖率等.作为其他算法的基础,如字典序等

    输入 : 一个正整数n
    输出 : n!个全排序(不重复),没有考虑到数字重复的情况.
    相关概念 : 全排序是1~n的每个数字有且仅有一个构成的排序.
    
    分析 : 自然思想是对数组array[0]从集合n中遍历,找出i,在对余下形成的集合继续遍历,直到集合为空.输出.
           数学思想是递归的思想n的全排序是在n-1的全排序基础上实现的.因此有两种解决方案.
           另外从输出的角度看,有n!个输出,那么该程序的时间复杂度至少为O(n!).     

    解决方法1 : 构建数组array[n],对array[0]循环存放1~n中的某个值i,对余下n-1个数关于array[1~n]进行全排序.
                对于n-1的全排序也是递归的.
                关键是如何确保n-1的全排序中不出现i值呢?如何确保n-2个全排序中不出现i或j值呢?....
                首先数组按1~n有序排列.对应的数组下标为[0...n-1].每一次递归是先从剩余数组中for循环找出一个值放在
                剩余数组的头位置.递归基础是剩余数组个数为0时,输出.
                
    解决方法2 : 递归.方法类似.思想相反,方法1是从数组中拿出一个放入指定的位置,方法2是将指定的数值放入随机位置中.
                具体为每一次递归将固定值放入所有空的位置.递归基础是空的个数为0个.从n到1,还是从1到n没有区别.

    解决方法3 : 非递归方式,找出数组的替代数,替代点.交换后面大于替代数的最小值.然后将替代点后面的数组倒序.
    缺点 : 开始必须是123有序的数组.

    引申问题 : 1.n!的计算公式(简单易懂的)?
               答 : n越大,可以用斯特林公式近似.
               2.考虑数组中有重复数字的情况?

 */

#include <iostream>
#include <vector>
using namespace std;

static int count = 1;
void print_out(int array[],int n)
{
    cout << ::count ++ << "数组为:";
    for (int i = 0; i < n; ++i)
    {
        cout << array[i] << " ";
    }
    cout <<endl;
}

void swap_int(int &a,int &b)
{
    int temp = a;
    a = b ;
    b = temp ;
}

void perm1(int *array,int n,int m)//m表示第m个,对应的数组下标为m-1
{
    if(m == n)
    {
        print_out(array,n);
    }//递归基础
    else
    {
        for (int i = m - 1; i < n; ++i)
        {
            swap_int(array[m-1],array[i]);
            perm1(array,n,m+1);
            swap_int(array[m-1],array[i]);
            //关键是如何保证递归后还是原来的排序.(如12345当1与3交换成32145,递归后还是32145,再进行交换)
            //这两句交换的精髓就是保证递归后还是递归前的排序.
            //理由 : 从最底层就保证递归前后的排序一致性.只能举例子.
            //从1看交换无差别 1
            //从2看交换开始12,21,返回12.
            //从3看交换是123,132, 213,231, 321,312.
        }
    }
}


void perm2(int *array,int n,int m)//m表示第m个元素,下标为m-1
{
    if (m == 0)//m == n+1
    {
        print_out(array,n);
    }
    else
    {
        for (int i = 0; i < n ; i++ )
        {
            if (array[i] == 0)
            {
                array[i] = m;
                perm2(array,n,m-1);//m+1
                array[i] = 0;
            }
        }
    }
}

//非递归方式 : 每次从右往左找出第一个小于右边的替代数,坐标为替代点.同时替代点后面比替代数大的最小数,进行交换.再对后置位倒置.
//             结束的判定条件是没有找到替代数.
void exchange(int &a , int &b)
{
    int temp = a;
    a = b;
    b = temp;
}
void perm3(int *array,int n)
{
    int loc = -1 ;  //表示替代数的下标(替代点) 范围[0...n-1]
    int min_loc = 0; //表示需要交换的比替代数的下标
    print_out(array,n);
    while (true)
    {
        loc = -1;
        for (int i = n-2 ; i >= 0; i--)
        {
            if (array[i] < array[i+1])//不用等号,理由是替代完仍然是原数组,会陷入死循环中.
            {
                loc = i ;
                int temp = array[loc+1];//要交换的数,暂时为其右边的值
                min_loc = loc+1 ; //下标
                for (int j = n-1; j > loc ; j--)
                {
                    if (array[j] > array[loc])
                    {
                        if (array [j] < temp)
                        {
                            temp = array[j];
                            min_loc = j;
                        }
                    }
                }
                //交换
                exchange(array[loc],array[min_loc]);

                //反序
                int length = n - loc -1 ; //length表示待反序的个数,loc+1..n-1有length个
                int mid = loc + length/2 ; 
                for (int k = loc + 1 ; k <= mid ; k++)//loc+1,n-1    loc+2,n-2  loc+3 ,n-3 
                {
                    exchange(array[k],array[n-k+loc]);
                }
                print_out(array,n);
                break ;
            }
        }
        if (loc == -1)return ;
    }
}

//测试
int main(int argc, char const *argv[])
{
    int n = 5;
    int a[]={1,2,3,4,5};
    perm1(a,n,1);
    ::count =1;

    int b[]={0,0,0,0,0};
    perm2(b,n,n);
    ::count =1;

    int c[]={1,2,3,4,5};
    perm3(c,n);
    ::count =1;
    
    system("pause");
    return 0;
}

转载于:https://www.cnblogs.com/jiangge3/articles/6003016.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值