Policy Gradients

博客记录了Policy Gradients相关内容。该算法不估计局面价值,而是预测动作概率。其更新函数为\(\theta_{t+1}=\theta_t + \alpha \cfrac{\partial J}{\partial \theta}\),\(J(\theta)\)受行为选择和到各状态概率影响。还提到梯度计算可通过蒙特卡洛估计或Q - learning、DQN迭代。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇博客只是为了自己记录,思路比较跳跃。

Policy Gradients

不估计局面的价值,转而预测选取每个动作的概率。因为某些游戏中我们可能会需要在相同的状态下做出随机行为,比如说某些资源有限的游戏,我们不可能一直在某一个地方一直获取资源。

更新函数是\(\theta_{t+1}=\theta_t + \alpha \cfrac{\partial J}{\partial \theta}\),其中\(J(\theta)\)是对当前参数产生的策略的评价,越高越好。

\(J(\theta)\)中,\(\theta\)的影响来自于两方面,一是在特定状态下的行为选择,二是这个策略到每个状态的概率。行为选择的偏导比较好考虑,然而行为造成的“某些高价值的状态没有到达”这件事情的偏导就没有那么形象了。

725727-20190316231247187-1402340354.png

725727-20190316231302940-612650820.png

我们把策略对可能到达状态的影响浓缩在了一个\(\mu (x)\)里,表示在该策略下到达\(x\)的概率。

最后关于这个梯度的计算,我自己有一些想法:

  • 一是通过蒙特卡洛估计,即使状态量巨大或者无限,状态的密度分布依然会把我们带到密度大的状态,我们的\(q\)值也是策略下的\(q\)值,没有统计到的密度小的状态价值再高也会被密度冲淡,影响不大。
  • 二是通过Q-learning or DQN来估计\(q\)值,两个算法相互迭代。

转载于:https://www.cnblogs.com/LincHpins/p/10545122.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值