牛客小白月赛9之签到题

链接:https://ac.nowcoder.com/acm/contest/275/A

题目描述

你在一栋楼房下面,楼房一共有n层,第i层每秒有p i的概率会扔下一个东西并砸到你
求第一秒内你被砸到的概率

输入描述:

第一行一个整数n
之后有n行,第i+1行有两个整数a
i
,b
i
,表示

输出描述:

设答案为
,你只需要找到一个最小的非负整数T,使得

输出这个T就行了
示例1

输入

复制
2
1 2
1 2

输出

复制
750000006

说明

一共只有如下状态:

1. 第一层和第二层都扔了下来

2. 第一层扔了下来

3. 第二层扔了下来

4. 第一层和第二层都没有扔下来

以上四种都是等概率发生的

除了第四种情况外,都会被砸到

因此被砸到的概率是 3/4,这个值在模1e9+7意义下就是750000006

备注:

数据范围
0 ≤ n ≤ 10
5

1 ≤ a
i
 ≤ b
i
 ≤ 10
5
 
不愧是签到题,思路一看就知道,但是非得加一个乘法逆元,于是签不了了。
百度乘法逆元代码:
inline long long extend_gcd(long long a,long long b,long long &x,long long &y)
{
    if(a==0&&b==0)
        return -1ll;
    if(b==0)
    {
        x=1ll;
        y=0ll;
        return a;
    }
    long long d=extend_gcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}
inline long long mod_reverse(long long a,long long n)
{
    long long x,y,d=extend_gcd(a,n,x,y);
    if(d==1)
        {
                    if(x%n<=0)return x%n+n;
                    else return x%n;
                 }
    else
        return -1ll;
}

  于是摘抄就过了;

#include<iostream>
long long mod=1000000007; 
using namespace std;
inline long long extend_gcd(long long a,long long b,long long &x,long long &y)
{
    if(a==0&&b==0)
        return -1ll;
    if(b==0)
    {
        x=1ll;
        y=0ll;
        return a;
    }
    long long d=extend_gcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}
inline long long mod_reverse(long long a,long long n)
{
    long long x,y,d=extend_gcd(a,n,x,y);
    if(d==1)
        {
                    if(x%n<=0)return x%n+n;
                    else return x%n;
                 }
    else
        return -1ll;
}
long long GCD(long long a,long long b)
{
    long long c=1;
    while(c)
    {
        c=a%b;
        a=b;
        b=c;
    }
    return a;
}
int main()
{
    int n;
    cin>>n;
    long long a,b,c,sum_a=1,sum_b=1;
    for(int i=0;i<n;i++)
    {
        cin>>a>>b;
//        c=GCD(a,b);
//        a/=c;
//        b/=c;				//要不要没多大影响 
        sum_a*=b-a;
        sum_b*=b;
        sum_b%=mod;
        sum_a%=mod;			//避免超内存(浮点错误) 
    }
    c=GCD(sum_a,sum_b);
    sum_a/=c;
    sum_b/=c;
    sum_a=(sum_b-sum_a+mod)%mod;//由于取余过所以sum_b不一定大于sum_a 
    c=mod_reverse(sum_b,mod);
    cout<<c*sum_a%mod;
}


 

  

转载于:https://www.cnblogs.com/mozheaishang/p/10004013.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值