$Luogu$ $P5517$ $[MtOI2019]$ 幻想乡数学竞赛

本文解析了迷途之家2019联赛T4题目,该题目涉及一个特定递推数列的求解。数列定义为a_n=3×a_{n-1}

链接

背景

\(disangan233\) ,迷途之家 \(2019\) 联赛 \((MtOI2019)\) \(T4\)\(Luogu\) \(P5517\)

题意

存在一个数列 \(\{ a_n\}\) ( \(n\in \{ 0,1,2,\cdots ,2^{64}-1\}\) )。
已知\(a_0=-3,a_1=-6,a_2=-12,a_n=3 \times a_{n-1}+a_{n-2}-3 \times a_{n-3}+3^n\)
给定一个非负整数 \(n\) ,令 \(p=10^{9}+7\) ,求 \(a_n \bmod p\) ,若 \(a_n<0\) ,输出 \((a_n \bmod p+p)\bmod p\)

解法

咕咕咕

代码

咕咕咕

转载于:https://www.cnblogs.com/Peter0701/p/11409713.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值