题目
问题 7. 应用 9.1.4 小节描述的下降法,但针对二维的拉普拉斯方程,并从三维的 Coulomb 势出发
KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_3(x,y,z) = -\\frac{1}{4\\pi}\\big{(}x^2 + y^2 + z^2\\big{)}^{-\\frac{1}{2}}, ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":33,"end":36},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_3(x,y,z) = -\\frac{1}{4\\pi}\\big{(}x^2 + y^2 + z^2\\big{)}^{-\\frac{1}{2}}, ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":34,"end":35},"text":"("}]}' after '\big' at position 34: …ac{1}{4\pi}\big{̲(̲}̲x^2 + y^2 + z^2…
(4)
推导出二维的对数势
KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi}\\log\\big{(}x^2 + y^2\\big{)}^{\\frac{1}{2}}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":34,"end":37},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi}\\log\\big{(}x^2 + y^2\\big{)}^{\\frac{1}{2}}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":35,"end":36},"text":"("}]}' after '\big' at position 35: …}{2\pi}\log\big{̲(̲}̲x^2 + y^2\big{)…
(5)
提示: 你需要计算发散的积分 ∫0∞U3(x,y,z)dz \int_0^\infty U_3(x,y,z) dz ∫0∞U3(x,y,z)dz。作为替代,考虑 ∫0NU3(x,y,z)dz \int_0^N U_3(x,y,z) dz ∫0NU3(x,y,z)dz,减去一个常数(例如 ∫0NU3(1,0,z)dz \int_0^N U_3(1,0,z) dz ∫0NU3(1,0,z)dz),然后取极限 N→∞ N \to \infty N→∞。
注意: 在给定的 U2(x,y,z) U_2(x,y,z) U2(x,y,z) 中,变量 z z z 是多余的,因为二维势只依赖于 x x x 和 y y y,因此已修正为 U2(x,y) U_2(x,y) U2(x,y)。
解答问题
下降法的核心思想是通过对额外维度(此处为 z z z 轴)积分,从高维(三维)拉普拉斯方程的基本解(Coulomb 势)推导出低维(二维)的基本解(对数势)。给定三维 Coulomb 势:
U3(x,y,z)=−14π(x2+y2+z2)−1/2. U_3(x,y,z) = -\frac{1}{4\pi} (x^2 + y^2 + z^2)^{-1/2}. U3(x,y,z)=−4π1(x2+y2+z2)−1/2.
目标是推导二维对数势:
KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)} = \\frac{1}{2\\pi} \\log r, \\quad \\text{其中} \\quad r = \\sqrt{x^2 + y^2}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":36,"end":39},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)} = \\frac{1}{2\\pi} \\log r, \\quad \\text{其中} \\quad r = \\sqrt{x^2 + y^2}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":37,"end":38},"text":"("}]}' after '\big' at position 37: …2\pi} \log \big{̲(̲}̲ (x^2 + y^2)^{1…
直接积分 ∫−∞∞U3(x,y,z)dz \int_{-\infty}^{\infty} U_3(x,y,z) dz ∫−∞∞U3(x,y,z)dz 是发散的,因此需按提示进行正则化:考虑有限范围 [0,N] [0, N] [0,N] 的积分,减去一个参考常数(例如在点 (1,0) (1,0) (1,0) 处的积分),然后取 N→∞ N \to \infty N→∞。然而,由于 U3 U_3 U3 是偶函数(关于 z z z 对称),为获得正确的幅值,需考虑全对称积分范围 [−N,N] [-N, N] [−N,N](这相当于将提示中的半范围积分乘以 2)。定义:
IN(x,y)=∫−NNU3(x,y,z)dz. I_N(x,y) = \int_{-N}^{N} U_3(x,y,z) dz. IN(x,y)=∫−NNU3(x,y,z)dz.
令 r2=x2+y2 r^2 = x^2 + y^2 r2=x2+y2,则:
IN(x,y)=∫−NN−14π(r2+z2)−1/2dz. I_N(x,y) = \int_{-N}^{N} -\frac{1}{4\pi} (r^2 + z^2)^{-1/2} dz. IN(x,y)=∫−NN−4π1(r2+z