jmeter插件JMeterPlugins-Standard 压力测试

本文详细介绍如何使用JMeterPlugins-Standard插件进行服务器资源监控,包括客户端和服务端插件的安装步骤,以及如何配置并运行性能测试,实现实时监控CPU、IO等关键性能指标。
jmeter插件JMeterPlugins-Standard 压力测试
  Jmeter有插件提供用来给用户监控所测试的服务器的资源使用 情况,需要有Jmeter客户端插件和服务端插件

1、客户端插件

       需要在https://jmeter-plugins.org/downloads/old/中下载对应的JMeterPlugins-Standard,一般下载最新版本即可,下载完成后,解压zip包,吧JMeterPlugins-Standard-xxx.jar包放到Jmeter的lib/ext目录下(不放置的话启动在Jmeter的监控器里面无法找到对应的监视器)

2、服务器插件

     需要在https://jmeter-plugins.org/wiki/PerfMonAgent/中下载服务端插件server-agent,下载后放置到需要监控的服务器中,window中执行startAgent.bat,linux中执行startAgent.sh(需要有执行权限,linux中可以使用nohup ./startAgent.sh & 在后台执行)

3、启动Jmeter,添加一个监听器,选择jp@gc-PerfMon Metrics Collector,通过Add Row增加监控项(cpu,io等),默认主机为localhost,端口为4444(Server-Agent的默认启动端口),修改主机为对应服务器ip即可(端口不占用情况下使用默认即可)

4、使用Jmeter对服务器加压就可以看到对应的性能指标了。

亲测可用。

摘自:http://blog.csdn.net/sunshinelyc/article/details/52787573

 

转载于:https://www.cnblogs.com/tsgxj/p/11555430.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值