Spark在StandAlone模式下提交任务,spark.rpc.message.maxSize太小而出错

本文介绍了Spark中因数据传输过大导致的任务失败问题及其解决方法。通过调整spark.rpc.message.maxSize参数,可以有效避免任务因传输数据超出限制而终止。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.错误信息
org.apache.spark.SparkException: Job aborted due to stage failure:Serialized task 32:5 was 1728746673 bytes, which exceeds max allowed: spark.rpc.message.maxSize (134217728 bytes).
Consider increasing spark.rpc.message.maxSize or using broadcast variables for large values.at org.apache.spark.scheduler.DAGScheduler……
2.错误原因
  Spark节点间传输的数据过大,超过系统默认的128M,因此需要提高
spark.rpc.message.maxSize的大小或者选择用broadcast广播数据。
然而在某些情况下,广播数据并不能契合我们的需求,这时我们可以在提交任务时对
spark.rpc.message.maxSize进行配置,调高maxSize即可。
3.具体解决方案

./bin/spark-submit \
  --class <main-class>
  --master <master-url> \
  --deploy-mode <deploy-mode> \
  --conf spark.rpc.message.maxSize=256
  ... # other options
  <application-jar> \
  [application-arguments]
红色区域即可根据需求更改spark.rpc.message.maxSize的大小,举例改为256M,实测有效。
 

转载于:https://www.cnblogs.com/liujStudy/p/7581603.html

<think>我们正在解决的是spark-submit提交任务时因spark.shuffle.service未开启导致的报错。根据用户上一次的问题和回答,我们知道这个报错通常发生在启用了动态分配(`spark.dynamicAllocation.enabled=true`)但没有配置外部Shuffle服务的情况下。因此,解决方案的核心是启用外部Shuffle服务并正确配置。 由于用户提到的是spark-submit提交任务时的报错,我们假设用户是在YARN集群上运行(因为这是最常见的生产环境)。因此,我们将重点放在YARN集群的配置上。 步骤概述: 1.Spark配置中启用Shuffle服务(spark.shuffle.service.enabled) 2. 配置YARN以支持Spark的Shuffle服务(修改yarn-site.xml) 3. 部署Spark的Shuffle服务JAR包到YARN的NodeManager 4. 重启NodeManager服务 5.提交任务时确保传递了正确的配置 下面详细展开: ### 解决方案:启用Spark Shuffle服务(针对YARN集群) #### 步骤1:修改Spark配置 在`$SPARK_HOME/conf/spark-defaults.conf`文件中添加以下配置: ```properties # 启用外部Shuffle服务 spark.shuffle.service.enabled true # 设置Shuffle服务端口(默认为7337,确保该端口在集群内开放) spark.shuffle.service.port 7337 # 同时,确保动态分配已启用(如果报错要求启用动态分配,则通常需要开启) spark.dynamicAllocation.enabled true ``` #### 步骤2:配置YARN的NodeManager 修改每个NodeManager节点上的`$HADOOP_HOME/etc/hadoop/yarn-site.xml`文件,添加以下内容: ```xml <configuration> <!-- 在aux-services中添加spark_shuffle --> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle,spark_shuffle</value> </property> <!-- 指定spark_shuffle的类 --> <property> <name>yarn.nodemanager.aux-services.spark_shuffle.class</name> <value>org.apache.spark.network.yarn.YarnShuffleService</value> </property> <!-- 指定shuffle服务的jar包位置(可选,如果已经放到lib目录下则不需要) --> <property> <name>yarn.nodemanager.aux-services.spark_shuffle.remote.path</name> <value>/path/to/spark/yarn/spark-<version>-yarn-shuffle.jar</value> </property> </configuration> ``` #### 步骤3:部署Shuffle服务JAR包 将Spark自带的Shuffle服务JAR包复制到YARN的lib目录下(每个NodeManager节点): ```bash # 进入Spark的yarn目录,找到对应的jar包(注意版本匹配) cp $SPARK_HOME/yarn/spark-<version>-yarn-shuffle.jar $HADOOP_HOME/share/hadoop/yarn/lib/ ``` 注意:`<version>`需要替换为实际的Spark版本,例如Spark3.1.2,则可能是`spark-3.1.2-yarn-shuffle.jar`。 #### 步骤4:重启NodeManager 在每个NodeManager节点上重启服务: ```bash $HADOOP_HOME/sbin/yarn-daemon.sh restart nodemanager ``` #### 步骤5:提交任务时确保配置生效 在提交任务时,可以通过`--conf`参数再次指定配置,以确保覆盖: ```bash spark-submit --master yarn \ --conf spark.shuffle.service.enabled=true \ --conf spark.dynamicAllocation.enabled=true \ --class your.main.class \ /path/to/your-app.jar ``` ### 验证配置是否生效 - 在NodeManager的日志中搜索`YarnShuffleService`,查看是否启动成功。 - 在Spark任务的日志中,查看是否有与Shuffle服务相关的错误。 ### 注意事项 1. **版本兼容性**:不同版本的Spark对应的Shuffle服务JAR包名称可能不同,请确保使用正确的版本。例如,Spark 2.x版本通常为`spark-yarn_2.xx-<version>.jar`,而Spark 3.x版本为`spark-<version>-yarn-shuffle.jar`。 2. **端口冲突**:如果7337端口已被占用,可以修改`spark.shuffle.service.port`为其他端口,并确保防火墙规则允许该端口通信。 3. **动态分配参数调整**:如果启用了动态分配,可能需要调整其他相关参数,如`spark.dynamicAllocation.minExecutors`、`spark.dynamicAllocation.maxExecutors`等。 ### 常见问题排查 - **ClassNotFoundException: org.apache.spark.network.yarn.YarnShuffleService**:说明JAR包没有正确部署到NodeManager的classpath中。检查JAR包位置和`yarn.nodemanager.aux-services.spark_shuffle.class`的配置。 - **端口冲突**:如果启动Shuffle服务时出现端口冲突,修改端口并重启NodeManager。 - **防火墙问题**:确保集群节点之间的Shuffle服务端口(默认7337)是开放的。 ### 相关问题 1. **如何在不启用动态分配的情况下避免该错误?** 如果不使用动态分配,可以设置`spark.dynamicAllocation.enabled=false`,但这样就不能利用动态分配带来的资源优化。 2. **在Standalone模式下如何配置外部Shuffle服务?** 在Standalone模式下,需要在每个Worker节点上手动启动Shuffle服务,并配置`spark.shuffle.service.enabled=true`和`spark.shuffle.service.port`。 3. **如何调整Shuffle服务的性能参数?** 可以调整`spark.shuffle.service.db.enabled`(启用索引缓存)、`spark.shuffle.service.index.cache.size`(缓存大小)等参数来优化性能[^3]。 4. **动态分配下Executor意外退出的原因?** 可能是由于Shuffle数据传输超时(调整`spark.shuffle.service.timeout`)或Executor空闲超时(调整`spark.dynamicAllocation.executorIdleTimeout`)设置过短。 [^1]: Spark动态分配错误分析 [^2]: SparkContext初始化报错详情 [^3]: ShuffleManager实现机制</think>### Spark-submit报错:`spark.shuffle.service`未开启解决方案 #### 问题分析 当提交Spark任务时出现`spark.shuffle.service`相关报错(如`Dynamic allocation requires external shuffle service`),通常是因为: 1. 启用了Executor动态分配(`spark.dynamicAllocation.enabled=true`)但未配置外部Shuffle服务[^1] 2. YARN集群未部署Spark Shuffle服务 3. Spark配置与集群环境不匹配 --- ### 完整解决步骤(YARN模式) #### 1. 检查动态分配配置 在`spark-submit`命令或`spark-defaults.conf`中确认配置: ```bash # 必须同时启用这两个配置 spark-submit --master yarn \ --conf spark.dynamicAllocation.enabled=true \ --conf spark.shuffle.service.enabled=true \ ... ``` #### 2. 部署YARN Shuffle服务 **步骤1:修改yarn-site.xml** ```xml <!-- 添加spark_shuffle服务 --> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle,spark_shuffle</value> </property> <!-- 指定Shuffle实现类 --> <property> <name>yarn.nodemanager.aux-services.spark_shuffle.class</name> <value>org.apache.spark.network.yarn.YarnShuffleService</value> </property> ``` **步骤2:复制Shuffle JAR包** ```bash # 查找Spark安装目录中的shuffle jar find $SPARK_HOME -name "*yarn-shuffle*.jar" # 复制到YARN的lib目录(所有节点) cp $SPARK_HOME/yarn/spark-3.5.0-yarn-shuffle.jar $HADOOP_HOME/share/hadoop/yarn/lib/ ``` **步骤3:重启服务** ```bash # 重启所有NodeManager $HADOOP_HOME/sbin/yarn-daemon.sh restart nodemanager ``` #### 3. 验证服务状态 检查NodeManager日志: ```log INFO org.apache.spark.network.yarn.YarnShuffleService: Started on port: 7337 INFO org.apache.spark.network.shuffle.ExternalShuffleBlockHandler: Registered executorId... ``` #### 4. 提交任务时强制配置 ```bash spark-submit --master yarn \ --conf spark.shuffle.service.enabled=true \ --conf spark.dynamicAllocation.enabled=true \ --conf spark.shuffle.service.port=7337 \ --class your.MainClass \ /path/to/your-app.jar ``` --- ### 配置说明表 | 配置项 | 推荐值 | 作用 | |--------|--------|------| | `spark.shuffle.service.enabled` | true | 启用外部Shuffle服务[^2] | | `spark.dynamicAllocation.enabled` | true | 动态分配Executor | | `spark.shuffle.service.port` | 7337 | Shuffle服务端口 | | `yarn.nodemanager.aux-services` | spark_shuffle | YARN辅助服务声明 | --- ### 常见问题排查 1. **ClassNotFoundException: YarnShuffleService** ```bash # 确保JAR路径正确 ls $HADOOP_HOME/share/hadoop/yarn/lib/*shuffle*.jar ``` 2. **端口冲突** ```bash # 修改服务端口 --conf spark.shuffle.service.port=7447 ``` 3. **防火墙问题** ```bash # 开放端口(所有节点) sudo firewall-cmd --permanent --add-port=7337/tcp sudo firewall-cmd --reload ``` 4. **版本不匹配** - Spark 3.x 必须使用`spark-3.x-yarn-shuffle.jar` - Spark 2.x 使用`spark-yarn_2.xx-x.x.x.jar` --- ### 相关问题 1. **如何在Standalone集群配置Shuffle服务?** 需在每个Worker节点手动启动`$SPARK_HOME/sbin/start-shuffle-service.sh`并配置`spark.shuffle.service.enabled=true`[^3] 2. **动态分配下Executor频繁回收怎么办?** 调整超时参数:`spark.dynamicAllocation.executorIdleTimeout=60s` 3. **如何验证Shuffle服务是否正常工作?** 查看Executor日志:`Registered with external shuffle service` 4. **YARN模式下如何优化Shuffle性能?** 启用`spark.shuffle.service.index.cache.size=1g`增加索引缓存 [^1]: Spark动态分配机制要求 [^2]: YARN辅助服务配置规范 [^3]: Standalone集群部署文档
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值