【线性代数公开课MIT Linear Algebra】 第三课 矩阵乘法和矩阵的逆

本文从四个角度解析矩阵乘法,并介绍了矩阵逆的概念及其求解方法。通过元素、行、列及行列组合的方式深入理解矩阵乘法;同时,探讨了矩阵逆的实际意义与Gauss-Jordan法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~


1. 矩阵乘法

对于矩阵,从四个角度来看待这一问题

  • 元素

    这是大学最常见的教法


  • 还记的上一节课的内容么?是的我们知道如何将矩阵乘矩阵转化为一堆row vector 乘矩阵


  • 同样, 也可以将矩阵乘矩阵看为矩阵乘一堆col vector

  • 行和列
    结合行和列,我们可以将矩阵乘矩阵看出为一堆row vetor分别与一堆col vector相乘之和、

从四个角度观察矩阵乘法能更好的理解其含义

2. 矩阵的逆

  • 逆的概念

对于矩阵A若存在AB=I=BA,则BA1,即A的逆

这是书本上的概念,实际上逆的概念源于我知道B经过线性变换A得到C那么我如何由C经过一个逆的变换重新还原出B
应用上来看的话就是一堆信息B经过系统A输出C,如果我们能够根据A找到某种形式的系统使得我们很方便的由输出复原输入,那么这是一件令人感到非常舒服的事情,当然这就相当于求解Ax=bA的逆
这里教的判断一个矩阵是否存在逆(是否可逆)的条件即

若存在一个非零向量x使得Ax=0,则A不可逆

原因在于若存在A1,那么我们无法从中复原x

  • Gauss-Jordan 法
    在高斯消元法的基础上,一次解多个方程
    这里写图片描述
    本质上看就是在求解方程
    这里写图片描述
    这一回的增广矩阵这样写
    这里写图片描述
    化为这种形式就可以得到A的逆
    这里写图片描述

PS:本文图片皆来自公开课视频截图
PS2:还是觉得方式不对,果然写博客没那么简单,慢慢摸索咯~

转载于:https://www.cnblogs.com/ThreeDayMemory/p/5958717.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值