python分箱统计个数_使用python 计算百分位数实现数据分箱代码

本文介绍了如何使用Python进行数据分箱统计个数,通过计算百分位数实现等频分箱。示例中展示了如何利用numpy和pandas进行数据处理,包括创建随机数据、计算分位点、对数据进行切分并生成新的标签。同时,文章还讨论了动态和静态时点计算百分位数的方法。

对于百分位数,相信大家都比较熟悉,以下解释源引自百度百科。

百分位数,如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数。可表示为:一组n个观测值按数值大小排列。如,处于p%位置的值称第p百分位数。

因为百分位数是采用等分的方式划分数据,因此也可用此方法进行等频分箱。

import pandas as pd

import numpy as np

import random

t=pd.DataFrame(columns=['l','s'])

#随机生成1000个0到999整数

t['l']=[random.randint(0,999) for _range in range(1000)]

#定义s为1,便于统计

t['s']=1

#通过np.percentile找到分位点

l_bin=[]

for i in range(0,101,10):

l_bin.append(np.percentile(t['l'],i))

#分位点最后一个数加上一个极小的数,否则切分后数字999会标记为nan

l_bin[-1]+=1/1e10

print('分位点:',np.array(l_bin).round(2))

#对随机数进行切分,right=False时左闭右开

t['box']=pd.cut(t['l'],l_bin,right=False)

tj=t.groupby('box')['s'].agg('sum')

print('分箱统计')

print(tj)

#生成新的标签

label=[]

for i in range(len(l_bin)-1):

label.append(str(l_bin[i].round(4))+'+')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值