函数的凹凸性的意义_两个与函数凹凸性和排序不等式有关的不等式

本文探讨了函数凹凸性与排序不等式的关系,提出了新的不等式定理。通过变换运算规则,作者发现了与传统排序不等式相似但不同的不等式形式,并给出了证明。定理1.0阐述了凸函数和凹函数的特定组合下,存在一种函数不等式。此外,还提出了一个猜想等待证明,涉及更复杂的匹配和求和规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

98188aa1bf49a81349a0da00c318f5b7.png

本文得到了定理1.0~两个与函数凹凸性和排序不等式关系密切的不等式。未查证这个结果是不是首次提出(有知道的小伙伴请评论或私信告诉我哦~),但是保证原创。


经查证,这个结果可以看做是

不等式的一个简单应用。

几天前在一个回答下面偶然回顾了排序不等式。如下响亮的名字:可以留下一个优美的不等式吗?

排序不等式 设有数组

和数组
则有以下不等式称为排序不等式:

其中

中的任意一个排列,当且仅当
时等号成立。

在排序不等式中,对元素做的运算是:从两个数组中各取

个元素,两两匹配,然后对每一匹配中两个元素做乘法,最后对上一步中的结果求和。排序不等式可以看做是:取不同的匹配方式,按以上运算规则得到结果的偏序排序。闲来无事考虑了这样一个问题,如果把上述运算规则改变一下,把先乘法后加法的顺序颠倒一下,变为:从两个数组中各取
个元素,两两匹配,然后对每一匹配中两个元素做加法,最后对上一步中的结果求积。 那么会不会有类似的不等式关系呢?首先考虑
,不考虑乱序匹配,猜测有:

为了证明

式,我特意去找了排序不等式的证明,企图寻找可借鉴的思路。排序不等式的证明巧妙、易懂,但对于
式的证明似乎没有用。于是只好另寻思路,首先对
式做个等价变换:

又由于对数函数是凸函数,于是猜测

的大小是否与 函数
的凹凸性有关,于是便有了以下
凹凸函数的排序不等式的最初想法

定理1.0

为 定义域 为
的凸函数,
为 定义域 为
的凹函数。设有数组
和数组
其中
, 则有以下函数不等式:

证明:

先证明不等式

。构造函数
.其中要求
易得
由于
是凸函数,且
所以由凸函数的性质(二阶导数小于零),有
接下来证明
式。

,因为
且数组
中元素的值是关于序号的增函数,所以

所以

式成立。进而
式成立。

式的证明过程与
式类似。

证毕。

所以,由定理1.0

式 成立
式成立。

以上过程,我们从一个特例发掘了两个不等式(定理1.0)。

注意到定理1.0并没有给出两个数组中以乱序匹配的和的作为函数的自变量,再对函数值进行求和(*真绕口啊(笑)*),即

在不等式中的位置。

一个很自然地猜测:

各位看官能否给出证明或证伪?


表示优超偏序,则易知:
应用Karamata不等式知上述两个不等式成立。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值