
本文得到了定理1.0~两个与函数凹凸性和排序不等式关系密切的不等式。未查证这个结果是不是首次提出(有知道的小伙伴请评论或私信告诉我哦~),但是保证原创。
经查证,这个结果可以看做是
几天前在一个回答下面偶然回顾了排序不等式。如下响亮的名字:可以留下一个优美的不等式吗?
排序不等式 设有数组
其中
在排序不等式中,对元素做的运算是:从两个数组中各取
为了证明
又由于对数函数是凸函数,于是猜测
定理1.0 设
证明:
先证明不等式
对
所以
证毕。
所以,由定理1.0,
以上过程,我们从一个特例发掘了两个不等式(定理1.0)。
注意到定理1.0并没有给出两个数组中以乱序匹配的和的作为函数的自变量,再对函数值进行求和(*真绕口啊(笑)*),即
一个很自然地猜测:
各位看官能否给出证明或证伪?