图论 - PAT甲级 1003 Emergency C++

本文详细解析PAT甲级1003EmergencyC++问题,利用Dijkstra算法求解从一个城市到另一个城市的最短路径及其救援队伍总数。通过实例输入输出展示算法实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PAT甲级 1003 Emergency C++

As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.

Input Specification:

Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (≤500) - the number of cities (and the cities are numbered from 0 to N−1), M - the number of roads, C​1​​ and C​2​​ - the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c​1​​, c​2​​ and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C​1​​ to C​2​​.

Output Specification:

For each test case, print in one line two numbers: the number of different shortest paths between C​1​​ and C​2​​, and the maximum amount of rescue teams you can possibly gather. All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.

Sample Input:

5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1

Sample Output:

2 4

由于初学图论此题参考了柳神的代码:
https://blog.csdn.net/liuchuo/article/details/52300668
这个小姐姐代码写的很好,大家可以多去逛逛她的博客哦!:
https://www.liuchuo.net/

题目大意:

n个城市m条路,每个城市有救援小组,所有的边的边权已知。给定起点和终点,求从起点到终点的最短路径条数以及最短路径上的救援小组数目之和。如果有多条就输出点权(城市救援小组数目)最大的那个

分析

用一遍Dijkstra算法~救援小组个数相当于点权,用Dijkstra求边权最小的最短路径的条数,以及这些最短路径中点权最大的值~dis[i]表示从出发点到i结点最短路径的路径长度,num[i]表示从出发点到i结点最短路径的条数,w[i]表示从出发点到i点救援队的数目之和~当判定dis[u] + e[u][v] < dis[v]的时候,不仅仅要更新dis[v],还要更新num[v] = num[u], w[v] = weight[v] + w[u]; 如果dis[u] + e[u][v] == dis[v],还要更新num[v] += num[u],而且判断一下是否权重w[v]更小,如果更小了就更新w[v] = weight[v] + w[u].

#include <iostream>
#include <algorithm>

using namespace std;
int n, m, c1, c2;
int e[510][510], weight[510], dis[510], num[510], w[510];
//num表示不同最短路径的数量 w表示可以到达各个点的最大队伍数量
bool visit[510]; 
const int inf = 99999999;

int main() {
    scanf("%d%d%d%d", &n, &m, &c1, &c2);
    for (int i = 0; i < n; i++)
        scanf("%d", &weight[i]);
    //初始化操作
    fill(e[0], e[0] + 510 * 510, inf);
    fill(dis, dis + 510, inf);
    //读入边
    int a, b, c;
    for (int i = 0; i < m; i++) {
        scanf("%d%d%d", &a, &b, &c);
        e[a][b] = e[b][a] = c;
    }
    //初始化源点
    dis[c1] = 0;
    w[c1] = weight[c1]; //初始化源点到自己的队伍数
    num[c1] = 1;        //初始化源点到自己的路径数量
    //Dijkstra算法核心
    for (int i = 0; i < n; i++) 
    {
        int u = -1, minn = inf;
        //找到当前距离源点最近的点
        for (int j = 0; j < n; j++) 
        {
            if (visit[j] == false && dis[j] < minn) 
            {
                u = j;
                minn = dis[j];
            }
        }
        if (u == -1) break; //如果以上的点都被遍历完就停止
        visit[u] = true;
        //寻找经过该中转点可以直接到达的点
        for (int v = 0; v < n; v++) 
        {
            if (visit[v] == false && e[u][v] != inf) 
            {
                if (dis[u] + e[u][v] < dis[v]) //如果此时是最短路径 
                {
                    dis[v] = dis[u] + e[u][v]; //更新最短路径长度
                    num[v] = num[u];           
                    w[v] = w[u] + weight[v];   //更新最短路路径的最大队伍数量
                }
                else if (dis[u] + e[u][v] == dis[v]) 
                {
                    num[v] = num[v] + num[u];
                    if (w[u] + weight[v] > w[v])
                        w[v] = w[u] + weight[v];
                }
            }
        }
    }
    printf("%d %d", num[c2], w[c2]);
    return 0;
}

转载于:https://www.cnblogs.com/wlw-x/p/11521323.html

内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习和Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度和稳定性。文档涵盖了从项目背景、目标意义、挑战与解决方案、模型架构及代码示例,到具体的应用领域、部署与应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建与训练到性能评估的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB和深度学习基础知识的研发人员、数据科学家以及从事时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTM与Transformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度和决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤和超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值