二元函数连续与偏导数存在的关系_高数(上)笔记——多元函数微分学

dc07fe20d5a003798ab25b9f131d030c.png

一、多元函数

距离、邻域、内点和外点、开集和闭集

很有趣的是,在多元函数中,由于自变量的特殊性,所以用开集代替了开区间。为了准确定义开集,需要定义其为“全都是内点的集合”。从而完善内点的定义:“邻域均在区域内”。从而再根据邻域的精确定义,得出开集的定义。

二、多元函数的极限

1.二元函数的极限,可以通俗地用如下语句表示:

二元函数在某点的邻域有定义,且当距离充分小时,对应的因变量相差也充分小,那么就有极限。

这个定义可以用来求极限,也可以用来说明极限不存在:假如

沿两种不同的路径
趋向于自变量的极限点,得出的
极限不同,这说明极限不存在。

2.在二元函数中也存在夹逼定理、极限不等式、极限四则运算、复合函数的极限。

3.需要区分累次极限和全面极限。

累次极限实际上是对一元函数讨论,全面极限则是对多元函数讨论。

三、多元函数的连续性

1.二元函数在某区域内的任意点处有极限,且等于该点的因变量,则称在该区域连续。

连续函数的四则运算与复合依旧具有连续性。

2.二元初等函数

3.映射的连续性:将因变量所处的集合变为一个n维空间。

4.连续多元函数的性质:有界、最值、介值。

四、偏导数和全微分

1.所谓的偏导数,实际上就是把另一个数当成常数,继续处理求导运算。

z=f(x,y)关于x在y0的偏导数就是在y0处的切线投影到zOx平面上的斜率。

2.混合偏导数

相等的充要条件是这俩混合偏导数在区域连续。

3.全微分:类似微分,如果

,其中
的距离,那么记

我们可以证明,

但有偏导数却不一定可微。必须要求两个偏导数都存在且连续。

五、复合函数和隐函数的微分法

1.

那么

2.一阶全微分的形式不变性

3.

t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值