
一、多元函数
距离、邻域、内点和外点、开集和闭集
很有趣的是,在多元函数中,由于自变量的特殊性,所以用开集代替了开区间。为了准确定义开集,需要定义其为“全都是内点的集合”。从而完善内点的定义:“邻域均在区域内”。从而再根据邻域的精确定义,得出开集的定义。
二、多元函数的极限
1.二元函数的极限,可以通俗地用如下语句表示:
二元函数在某点的邻域有定义,且当距离充分小时,对应的因变量相差也充分小,那么就有极限。
这个定义可以用来求极限,也可以用来说明极限不存在:假如
2.在二元函数中也存在夹逼定理、极限不等式、极限四则运算、复合函数的极限。
3.需要区分累次极限和全面极限。
累次极限实际上是对一元函数讨论,全面极限则是对多元函数讨论。
三、多元函数的连续性
1.二元函数在某区域内的任意点处有极限,且等于该点的因变量,则称在该区域连续。
连续函数的四则运算与复合依旧具有连续性。
2.二元初等函数
3.映射的连续性:将因变量所处的集合变为一个n维空间。
4.连续多元函数的性质:有界、最值、介值。
四、偏导数和全微分
1.所谓的偏导数,实际上就是把另一个数当成常数,继续处理求导运算。
z=f(x,y)关于x在y0的偏导数就是在y0处的切线投影到zOx平面上的斜率。
2.混合偏导数
3.全微分:类似微分,如果
我们可以证明,
但有偏导数却不一定可微。必须要求两个偏导数都存在且连续。
五、复合函数和隐函数的微分法
1.
那么
2.一阶全微分的形式不变性
3.