达尔盖1024php,www.decorluxcn.com

Domain Name: decorluxcn.com

Registry Domain ID: 2048499164_DOMAIN_COM-VRSN

Registrar WHOIS Server: whois.web.com

Registrar URL: http://www.networksolutions.com

Updated Date: 2016-08-06T06:01:08Z

Creation Date: 2016-08-01T18:50:32Z

Registrar Registration Expiration Date: 2017-08-01T18:50:32Z

Registrar: Domainsouffle.com LLC

Registrar IANA ID: 1194

Reseller:

Domain Status: ok http://icann.org/epp#OK

Registry Registrant ID:

Registrant Name: jianfeng wu

Registrant Organization: www.Juming.com

Registrant Street: hefeishi,luyangqu,caifuguangchangshouzuo,1115hao

Registrant City: hefei

Registrant State/Province: anhui

Registrant Postal Code: 230001

Registrant Country: CN

Registrant Phone: +86.4009972996

Registrant Phone Ext.:

Registrant Fax:

Registrant Fax Ext.:

Registrant Email: admin@juming.com

Registry Admin ID:

Admin Name: jianfeng wu

Admin Organization: www.Juming.com

Admin Street: hefeishi,luyangqu,caifuguangchangshouzuo,1115hao

Admin City: hefei

Admin State/Province: anhui

Admin Postal Code: 230001

Admin Country: CN

Admin Phone: +86.4009972996

Admin Phone Ext.:

Admin Fax:

Admin Fax Ext.:

Admin Email: admin@juming.com

Registry Tech ID:

Tech Name: jianfeng wu

Tech Organization: www.Juming.com

Tech Street: hefeishi,luyangqu,caifuguangchangshouzuo,1115hao

Tech City: hefei

Tech State/Province: anhui

Tech Postal Code: 230001

Tech Country: CN

Tech Phone: +86.4009972996

Tech Phone Ext.:

Tech Fax:

Tech Fax Ext.:

Tech Email: admin@juming.com

Name Server: juming.dnsdun.net

Name Server: juming.dnsdun.com

DNSSEC: Unsigned

Registrar Abuse Contact Email: abuse@web.com

Registrar Abuse Contact Phone: +1.8773812449

URL of the ICANN WHOIS Data Problem Reporting System: http://wdprs.internic.net/

>>> Last update of WHOIS database: 2016-08-06T06:01:08Z <<<

For more information on Whois status codes, please visit https://www.icann.org/resources/pages/epp-status-codes-2014-06-16-en.

The data in Domainsouffle.com LLC's WHOIS database is provided to you by

Domainsouffle.com LLC for information purposes only, that is, to assist you in

obtaining information about or related to a domain name registration

record. Domainsouffle.com LLC makes this information available "as is," and

does not guarantee its accuracy. By submitting a WHOIS query, you

agree that you will use this data only for lawful purposes and that,

under no circumstances will you use this data to: (1) allow, enable,

or otherwise support the transmission of mass unsolicited, commercial

advertising or solicitations via direct mail, electronic mail, or by

telephone; or (2) enable high volume, automated, electronic processes

that apply to Domainsouffle.com LLC (or its systems). The compilation,

repackaging, dissemination or other use of this data is expressly

prohibited without the prior written consent of Domainsouffle.com LLC.

Domainsouffle.com LLC reserves the right to modify these terms at any time.

By submitting this query, you agree to abide by these terms.

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值