无人驾驶环境感知技术研究与应用论文汇编

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:无人驾驶技术的快速发展让环境感知成为其核心挑战之一。本系列论文深入分析了环境感知的关键技术,包括图像处理、激光雷达、深度学习,并探讨了如何通过多传感器数据融合、模型优化提升感知能力。涵盖道路识别、障碍物检测、交通标志理解等应用,并对如何增强系统鲁棒性和处理实时感知的挑战进行详细讨论。
无人驾驶中环境感知的相关论文,对找到学习思路很有帮助。

1. 无人驾驶环境感知的重要性

在现代智能驾驶系统中,环境感知是实现无人驾驶技术的基石。高度精确和实时的环境感知系统可以确保车辆在多变的道路环境中安全行驶。本章旨在阐述环境感知对无人驾驶技术至关重要的原因,并为进一步探讨图像处理、激光雷达以及深度学习等技术在环境感知中的应用奠定基础。

环境感知包含了对外部环境的识别、解析和预测,其重要性主要体现在以下几个方面:

  • 安全性 :通过准确识别道路上的障碍物、行人、信号灯和路况,环境感知系统能够极大提升无人驾驶车辆的行驶安全性。
  • 决策依据 :环境感知为无人驾驶车辆提供了必要的信息,以便做出合理的行驶决策,如变道、加速或减速。
  • 交互能力 :环境感知使得无人驾驶车辆能与周围环境进行有效交互,例如与其他车辆或智能交通系统协同工作。

在接下来的章节中,我们将详细探讨如何利用先进的图像处理技术、激光雷达、深度学习以及多传感器数据融合技术来实现高度准确的环境感知功能,并讨论如何通过优化手段提升系统的整体性能和鲁棒性。

2. 图像处理技术在环境感知中的应用

在无人驾驶领域,环境感知是一个至关重要的话题,它是实现可靠自主导航和决策的关键。图像处理技术作为一种强大的工具,能够从图像数据中提取有用信息,辅助无人驾驶系统理解其所处的环境。本章节将深入探讨图像处理技术在环境感知中的应用。

2.1 图像处理技术概述

2.1.1 图像处理的基本概念和方法

图像处理是通过一系列的数学运算和算法来处理图像数据,从而达到改善图像质量、提取有用信息或者进行图像分析的目的。基本概念包括像素、灰度、对比度、亮度等。图像处理的方法可以大致分为以下几类:

  • 线性滤波器 :包括均值滤波、高斯滤波等,用于减少图像噪声,平滑图像。
  • 边缘检测 :如Sobel算子、Canny算子等,用于识别图像中的边缘,即物体的轮廓。
  • 特征提取 :从图像中提取显著的特征,如HOG、SIFT等。
  • 图像分割 :将图像分割为多个部分或对象,最简单的例子是阈值分割。
  • 图像重建 :使用一系列的图像处理步骤恢复出原始图像。

下面是一个简单的图像处理流程示例,展示了如何使用Python中的OpenCV库对图像进行基础处理:

import cv2
import numpy as np

# 读取图像
image = cv2.imread('path_to_image.jpg')

# 转换为灰度图像
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 应用高斯模糊以平滑图像
blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)

# 边缘检测
edges = cv2.Canny(blurred_image, 100, 200)

# 显示结果
cv2.imshow('Original Image', image)
cv2.imshow('Gray Image', gray_image)
cv2.imshow('Blurred Image', blurred_image)
cv2.imshow('Edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

以上代码展示了从读取图像到灰度转换、平滑处理、边缘检测的整个过程。这些基础操作是构建复杂图像处理应用的基石。

2.1.2 图像预处理和特征提取

图像预处理是为图像分析和特征提取做准备的过程。这个阶段所涉及的操作包括灰度化、二值化、去噪等。而特征提取则是从预处理后的图像中提取有用的信息,比如物体的形状、大小、颜色等。

特征提取是图像处理和计算机视觉中非常重要的一个环节,因为它直接影响到后续的图像分析和识别效果。通过提取图像中的特征,我们可以将高维度的图像数据简化为较低维度的描述符,这些描述符更容易被分析和理解。

下面的代码展示了如何使用HOG(Histogram of Oriented Gradients)描述符提取图像特征:

from skimage.feature import hog
from skimage import exposure
import matplotlib.pyplot as plt

# 对灰度图像进行HOG特征提取
fd, hog_image = hog(image, orientations=8, pixels_per_cell=(16, 16),
                    cells_per_block=(1, 1), visualize=True)

# 图像可视化
plt.imshow(hog_image, cmap='gray')
plt.show()

2.2 图像处理技术在无人驾驶中的应用

2.2.1 道路标识识别

在无人驾驶系统中,道路标识的识别是确保车辆遵循交通规则的关键环节。图像处理技术可以通过识别路面标线、交通信号灯、交通标志等,帮助无人驾驶车辆做出正确的驾驶决策。

2.2.2 车辆和行人检测

图像处理还可以用于实时检测和跟踪道路上的其他车辆和行人。通过特征匹配、背景减除、深度学习等方式,无人驾驶车辆能够及时发现并避开行人,或者与其他车辆保持安全距离。

下面的表格概述了无人驾驶中常用的图像处理技术:

技术 应用领域 原理描述
道路标识识别 自动识别道路信号和标识 通过颜色识别、形状匹配和上下文信息判断道路标识类型
车辆检测 检测其他道路上的车辆 利用边缘检测和模式匹配算法识别车辆轮廓
行人检测 检测和避让行人 结合深度学习模型对行人进行检测和跟踪

综上所述,图像处理技术是实现无人驾驶车辆环境感知能力的关键手段之一。通过各种图像处理方法,车辆可以理解和解析其周边环境,做出及时且准确的驾驶决策,这对于提高无人驾驶的可靠性和安全性至关重要。

3. 激光雷达技术及其优势

3.1 激光雷达技术原理

3.1.1 激光雷达的工作原理和分类

激光雷达(Light Detection and Ranging,LiDAR)是一种基于光波传输和反射原理进行距离测量的技术。其基本原理是通过发射激光脉冲并接收其反射回来的信号,利用光速和时间差计算目标物体的距离。激光雷达系统通常由激光发射器、接收器、扫描系统和信号处理器组成。

在无人驾驶汽车领域,激光雷达系统按照扫描方式可分为机械式激光雷达和固态激光雷达。机械式激光雷达通过机械旋转部件带动激光束进行360度扫描,而固态激光雷达通过电子方式控制激光束扫描,无需旋转部件,因而具有更高的可靠性和紧凑的尺寸。

激光雷达技术的关键在于其能够提供高精度的三维点云数据,这对于车辆在复杂环境中的精确位置定位和障碍物检测至关重要。

3.1.2 激光雷达的关键性能指标

激光雷达的关键性能指标主要包括以下几个方面:

  • 测距精度:指激光雷达测量距离时的误差范围,精度越高,测量结果越可靠。
  • 点云密度:点云密度决定了激光雷达生成的三维场景的详细程度。
  • 检测范围:检测范围决定了激光雷达在环境中的感知距离,更远的检测范围有助于提前识别和响应潜在的障碍物。
  • 帧率:帧率决定了激光雷达能够多快更新扫描得到的数据,高帧率对于动态环境下的感知非常重要。
  • 抗干扰能力:抗干扰能力反映了激光雷达在不同光照和天气条件下的稳定性。

3.2 激光雷达技术在无人驾驶中的优势

3.2.1 精确的三维空间感知

在无人驾驶领域,精确的三维空间感知是确保安全和可靠性的核心。激光雷达能够生成高精度的三维点云数据,这些数据能够详细地描绘出车辆周边环境的三维结构。这种三维感知能力对于理解和解释复杂交通环境,如交叉路口、多车道高速公路以及城市街道的复杂场景,具有不可替代的作用。

激光雷达的三维点云数据具有很好的一致性,可以用来构建高精度的地图和进行精确定位。在结合其他传感器数据,如视觉相机和GPS时,可以为无人驾驶车辆提供更加全面和准确的环境感知信息。

3.2.2 不受光照和天气影响的稳定性

与基于光学的摄像头不同,激光雷达在不同的光照条件下都能稳定工作。例如,在夜间或直射日光下,摄像头图像可能会出现过曝或过暗的情况,而激光雷达的性能受光线影响较小。此外,激光雷达还可以在各种天气条件下工作,如雨雪等,因为激光束比可见光更容易穿透雨雪粒子。

这种抗干扰能力使得激光雷达成为无人驾驶系统中不可或缺的一部分,特别是在恶劣天气条件下,能够提供稳定可靠的感知信息,从而增强整个系统的鲁棒性。

graph TD
    A[开始] --> B[激光雷达发射激光脉冲]
    B --> C[激光脉冲遇到障碍物反射]
    C --> D[激光雷达接收反射信号]
    D --> E[计算光速和时间差]
    E --> F[得出距离信息]
    F --> G[生成三维点云数据]
    G --> H[应用于无人驾驶]
    H --> I[车辆定位与障碍物检测]
    I --> J[精确导航与决策]

通过上述流程图,我们可以看到激光雷达在无人驾驶中应用的一个基本流程。从发射激光脉冲到获取三维点云数据,再到辅助车辆进行定位和障碍物检测,激光雷达在这一系列环节中起到了关键作用。

激光雷达技术的优势不仅在于它能够提供精确的三维空间感知,而且在于其工作的稳定性和可靠性,这在确保无人驾驶系统安全和效率方面至关重要。

4. 深度学习在环境感知中的作用

在现代无人驾驶技术中,深度学习已经被广泛应用于环境感知。深度学习的算法能够模拟人脑的神经网络结构,通过学习大量数据来实现对环境的感知和理解。它在无人驾驶环境中扮演着核心角色,不仅提升了感知的准确性,而且还增强了系统的实时处理能力。

4.1 深度学习基础知识

在深入探讨深度学习在无人驾驶中的应用之前,首先需要对深度学习的基础知识进行一个全面的了解。深度学习是一种基于人工神经网络的学习方法,它通过多层处理单元对数据进行复杂的转换和学习。

4.1.1 神经网络的基本结构和工作原理

深度学习的核心是神经网络。一个典型的神经网络包含输入层、隐藏层和输出层。每一层由若干神经元组成,神经元之间通过权重连接。在训练过程中,网络会通过调整这些权重来最小化预测和实际输出之间的差异,即学习误差。

神经网络结构示例
graph LR
A[输入层] -->|数据| B(隐藏层1)
B -->|数据| C(隐藏层2)
C -->|数据| D(输出层)

4.1.2 常见的深度学习模型和训练技巧

深度学习领域已经发展出多种模型,如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。CNN在图像处理领域尤为流行,能够有效地处理空间关系;而RNN和LSTM在网络序列数据处理中表现出色,特别适合处理视频数据和时序数据。

训练技巧

在训练深度学习模型时,使用诸如批量归一化、Dropout、梯度裁剪等技术可以提高模型的泛化能力和避免过拟合。

4.2 深度学习在无人驾驶环境感知中的应用

深度学习在无人驾驶的环境感知领域中已经取得了革命性的进展。它不仅能够从原始数据中提取特征,还能在一定程度上理解和解释环境。

4.2.1 通过深度学习提升感知准确性

通过大量数据的训练,深度学习模型能够达到极高的感知准确性。例如,在物体检测中,卷积神经网络可以对图像中的车辆、行人、交通标志等进行快速准确的检测。

物体检测示例代码(使用Python和TensorFlow)
import tensorflow as tf
from tensorflow.keras.applications import VGG16
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.models import Model

# 加载预训练的VGG16模型
base_model = VGG16(weights='imagenet', include_top=False)

# 冻结基础模型的层
for layer in base_model.layers:
    layer.trainable = False

# 添加自定义的顶层
x = Flatten()(base_model.output)
x = Dense(1024, activation='relu')(x)
predictions = Dense(num_classes, activation='softmax')(x)

# 构建最终模型
model = Model(inputs=base_model.input, outputs=predictions)

# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

4.2.2 实时环境感知的深度学习模型

实时环境感知是无人驾驶系统的关键要求之一。深度学习模型,尤其是轻量级的神经网络结构,比如MobileNet和SqueezeNet,为实时处理提供了可能。这些模型在保持较高准确率的同时,大大减少了计算资源的需求。

实时环境感知模型选择考虑因素

在选择适合实时环境感知的深度学习模型时,需要综合考虑模型的准确率、速度(推理时间)、模型大小和对硬件的要求。

通过本章节的介绍,我们已经了解了深度学习的基础知识和它在无人驾驶环境感知中的关键作用。下一章节将探讨多传感器数据融合的必要性,它是提高无人驾驶系统感知能力的另一个关键技术。

5. 多传感器数据融合的必要性

5.1 多传感器数据融合基础

5.1.1 数据融合的概念和层次结构

数据融合(Data Fusion),也称为信息融合,是一个将来自多个信息源的数据和信息结合起来,从而获得比单一信息源更准确、更可靠的估计和决策的过程。在无人驾驶领域,多传感器数据融合是一个核心环节,因为它可以综合不同类型的传感器数据(如雷达、激光雷达、摄像头等),以提高对环境的感知能力。

数据融合按不同层次可以分为以下几种:

  • 像素级融合(Pixel Level Fusion) :直接对图像中的像素进行融合处理。例如,将来自热成像相机和普通摄像头的图像在像素级别结合起来。
  • 特征级融合(Feature Level Fusion) :在提取了原始数据的特征之后,将这些特征信息进行整合。例如,结合激光雷达提取的几何特征和摄像头提取的纹理特征。
  • 决策级融合(Decision Level Fusion) :在对原始数据做出初步判断或决策之后,将这些决策结果结合起来。这种方法常见于多传感器的目标检测和识别。

5.1.2 数据融合的关键技术

多传感器数据融合的关键技术包括:

  • 时间同步 :确保不同传感器捕获的数据能在时间上对应起来,为数据融合提供准确的时间参考。
  • 空间配准 :把不同传感器获取的数据统一到一个共同的空间坐标系中,以解决不同传感器视角和分辨率带来的差异。
  • 数据关联 :确定哪些数据来自同一个目标,这是保证融合结果正确性的重要步骤。
  • 状态估计 :使用如卡尔曼滤波器等算法对融合后的数据进行最优估计。
  • 融合算法 :使用诸如加权平均、贝叶斯估计、神经网络等算法进行决策级或特征级的数据融合。

5.2 多传感器数据融合在无人驾驶中的实践

5.2.1 传感器数据同步和融合策略

多传感器系统中,数据同步是基本要求。这通常涉及硬件(如GPS时间同步)和软件(时间戳校准)层面的同步。在软件层面,通常采用时间戳的方式,确保每个数据包都标有采集时间。数据同步后,融合策略的设计至关重要,以下是几种常见的融合策略:

  • 早期融合 :将来自不同传感器的数据在特征提取之前进行融合。例如,将多个摄像头拍摄的图像进行像素级融合。
  • 晚期融合 :将不同传感器的独立决策结果在做出最终决策前进行合并。这适用于决策级融合,例如,将激光雷达和摄像头各自独立的目标检测结果进行整合。
# 示例代码:简单的时间同步算法

# 假设有两个传感器的数据流,包含时间戳
sensor1_data = [
    {"timestamp": 100, "data": ...},
    {"timestamp": 200, "data": ...},
    ...
]

sensor2_data = [
    {"timestamp": 110, "data": ...},
    {"timestamp": 210, "data": ...},
    ...
]

# 时间同步函数
def time_sync(sensor1, sensor2):
    for s1, s2 in zip(sensor1_data, sensor2_data):
        # 如果时间戳接近,则认为数据来自同一时间点
        if abs(s1['timestamp'] - s2['timestamp']) < THRESHOLD:
            yield s1, s2

# 在实际应用中,THRESHOLD将根据系统的需求和传感器特性来设定

5.2.2 提高感知可靠性的数据融合实例

下面通过一个简化的例子来说明如何实现传感器数据的融合,以提高无人驾驶车辆的感知可靠性。假设我们有两个传感器——一个摄像头和一个激光雷达。我们将使用特征级融合来结合来自这两个传感器的数据。

# 示例代码:特征级融合的简化过程

# 从摄像头获取的特征
camera_features = get_camera_features()

# 从激光雷达获取的特征
lidar_features = get_lidar_features()

# 特征级融合函数
def fuse_features(camera, lidar):
    # 假设我们可以通过某种方式(例如,机器学习模型)来融合这些特征
    fused_features = machine_learning_model(camera, lidar)
    return fused_features

# 通过融合特征进行目标检测
fused_features = fuse_features(camera_features, lidar_features)
detections = perform_detection(fused_features)

# 调用机器学习模型进行融合和目标检测的过程需要根据实际的算法和模型进行调整

通过上述的融合过程,系统能够在一定程度上实现冗余,即当某一传感器失效或数据不准确时,其他传感器仍能提供足够的信息来进行可靠的决策。这样不仅增强了无人驾驶系统的稳定性和鲁棒性,也进一步提高了系统的感知准确性和安全性。

在本章中,我们探索了多传感器数据融合的基础知识,包括数据融合的概念、层次结构和关键技术。然后通过实践例子,具体说明了如何通过数据同步和融合策略提高无人驾驶车辆对环境的感知能力和可靠性。随着无人驾驶技术的发展,数据融合技术也在不断进步,为无人驾驶提供了更加强大和稳定的感知能力。

6. 模型优化和系统效率提升方法

在无人驾驶领域,环境感知模型的优化与系统效率的提升是实现高性能自动驾驶系统的关键。本章将深入探讨模型优化策略,以及如何提高系统效率的各种技术途径。

6.1 模型优化策略

模型优化旨在提高系统的准确性和效率,减少资源消耗,是系统开发的重要组成部分。优化可以从多个层面进行,包括参数优化、模型压缩等。

6.1.1 参数优化和模型压缩

参数优化主要关注于找到模型最优的参数配置,从而提升模型性能。它通常涉及参数初始化、学习率调整、正则化方法以及超参数优化等技术。

在参数优化的基础上,模型压缩是针对已经训练好的模型进行处理,以减少模型大小和计算需求,从而提高运行速度和减少内存占用。常见的模型压缩技术包括:

  • 权重剪枝(Weight Pruning) : 识别并移除神经网络中贡献较小的连接和神经元。
  • 量化(Quantization) : 将模型中的浮点数参数转换为定点数表示,以减少计算精度和存储需求。
  • 知识蒸馏(Knowledge Distillation) : 将大型、复杂的模型(教师模型)的知识转移到一个更小、更简单的模型(学生模型)中。
# 示例代码:模型量化
import torch
import torch.nn.quantized as nnq

# 假设model是一个已经训练好的模型
model = ... # 加载预训练模型

# 将模型转换为量化模型
quantized_model = torch.quantization.quantize_dynamic(
    model,       # the original model
    {torch.nn.Linear}, # a set of layers to dynamically quantize
    dtype=torch.qint8) # the target dtype for quantized weights

# 量化模型现在可以部署使用,并且有更小的模型尺寸和更快的推理速度

在上述代码中, quantize_dynamic 函数使用动态量化方法对 model 进行量化处理,将线性层的权重从浮点数转换为8位整数表示。动态量化相较于静态量化可以减少一些精度损失。

6.1.2 降低计算复杂度的方法

降低计算复杂度是提升系统效率的另一种有效方法,它不直接减少模型大小,而是通过算法优化来降低模型计算量。比如,稀疏表示、高效卷积算法以及注意力机制等。

6.2 系统效率提升技术

系统效率提升技术主要关注如何在有限的硬件资源约束下,提高数据处理和传输效率,同时降低能耗。

6.2.1 实时数据处理和传输优化

实时数据处理要求系统能够快速响应并处理大量数据。优化策略包括但不限于:

  • 多线程与异步处理 :通过多线程并发执行任务来提高处理效率。
  • 数据预处理和缓存策略 :减少磁盘I/O操作,利用缓存预取数据。
  • 边缘计算 :将数据处理任务下放到靠近数据源的边缘节点上,降低数据传输时间和带宽需求。

6.2.2 能耗管理和热优化技术

能耗管理和热优化是提升系统效率的重要方面,特别是在车载嵌入式系统中。一些关键的技术包括:

  • 动态电压频率调节(DVFS) :根据系统负载动态调整处理器频率和电压,以减少功耗。
  • 热管理 :包括硬件散热方案和软件层面的热监测与控制,保证系统在安全温度范围内稳定运行。
  • 能效比优化 :提高计算单元和存储单元的能效比,例如使用低功耗内存技术。

在下表中,我们可以对比不同类型的内存技术在性能、功耗和成本方面的差异:

内存类型 访问速度 功耗 成本
DRAM
SRAM 极快
Flash 中等
MRAM 中等 中等

通过选择合适的内存技术并结合以上提及的策略,可以显著提升系统的整体效率和性能。这些方法的综合运用将有助于构建一个更加节能、快速响应的无人驾驶感知系统。

7. 系统鲁棒性与不确定性处理技术

7.1 鲁棒性系统设计

7.1.1 面对异常情况的系统鲁棒性设计

鲁棒性是指系统在面对错误、干扰、输入变化或异常行为时仍能继续正常运行的能力。在无人驾驶系统中,鲁棒性尤为关键,因为系统的失效可能导致严重后果。设计鲁棒性强的系统,需要在软件和硬件两个层面进行考虑。

在硬件层面,应选用稳定可靠的组件,设计冗余系统来处理关键部分的故障。例如,无人驾驶车辆可采用双电源系统、多传感器配置和故障安全机制,确保在单点故障情况下系统依然能够运行。

在软件层面,需要开发出健壮的算法和程序。可以使用异常处理机制来增强程序的鲁棒性,例如通过模块化设计使得部分程序失效时不会影响整体功能。此外,使用容错算法可以有效避免单点故障导致的全面系统崩溃。

7.1.2 环境变化适应性增强策略

环境的不确定性是无人驾驶面临的重大挑战之一。适应性设计要求系统能够应对不同的环境变化,如天气、光照、交通情况等。

对于天气和光照条件的变化,系统需要通过鲁棒的图像处理和激光雷达数据处理算法来保证感知能力。例如,通过增强型的图像处理算法,可以在光照条件不佳的情况下仍能准确识别道路标识和障碍物。

交通情况的变化则需要依赖复杂的预测模型和实时决策算法。系统可以通过历史数据分析、实时交通监控数据,使用机器学习算法预测潜在的交通动态,并作出适应性的调整。

7.2 不确定性处理方法

7.2.1 不确定性来源和评估方法

在无人驾驶领域,不确定性主要来源于感知系统、决策系统以及环境本身。感知系统的不确定性可能来自于传感器的噪声、测量误差,或是环境因素对感知结果的影响。决策系统的不确定性则涉及预测和规划过程,例如未来交通情况的不可预测性。

评估不确定性的方法包括统计分析和概率建模。可以通过统计方法来量化传感器数据的置信区间,例如使用置信度阈值来评估障碍物检测的可靠性。对于预测过程中的不确定性,可以使用贝叶斯模型或其他概率模型来对可能的未来状态进行建模,从而评估不同决策的潜在风险。

7.2.2 提高决策可靠性的技术途径

提高决策可靠性需要在决策模型中融入不确定性评估,实现风险评估和适应性决策。使用概率规划和优化算法,比如马尔可夫决策过程(MDPs)和随机规划,可以帮助无人驾驶车辆在考虑不确定性的同时制定最优决策。

此外,安全层叠结构可以被用于增强系统的决策可靠性。在该结构中,不同层级的算法和模型可以根据当前环境和感知数据,提供不同层次的风险评估。这有助于车辆在必要时采取保守的行动,降低潜在的风险。

为了实现这一目标,系统必须整合来自多个传感器和多个信息源的数据,并利用深度学习技术提高对复杂环境和场景的理解。同时,系统应该能够实时进行性能监控,并在发现性能下降时及时调整,从而在保证安全的前提下持续优化车辆的运行效率。

通过结合这些技术途径,无人驾驶车辆可以在动态和不确定的环境中更加稳健地进行决策,从而提高整体的安全性和可靠性。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:无人驾驶技术的快速发展让环境感知成为其核心挑战之一。本系列论文深入分析了环境感知的关键技术,包括图像处理、激光雷达、深度学习,并探讨了如何通过多传感器数据融合、模型优化提升感知能力。涵盖道路识别、障碍物检测、交通标志理解等应用,并对如何增强系统鲁棒性和处理实时感知的挑战进行详细讨论。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值