【深度学习】transformer中softmax为什么要scaled

本文深入探讨了Transformer模型中Scaled Softmax的重要性,解释了为何在点积注意力机制中需要进行缩放,以及它如何帮助缓解梯度消失问题。此外,还讨论了在不同情境下是否需要应用Scaled Softmax。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文中解释是:向量的点积结果会很大,将softmax函数push到梯度很小的区域,scaled会缓解这种现象。怎么理解将sotfmax函数push到梯度很小区域?还有为什么scaled是维度的根号,不是其他的数?

答案:q,k向量点积后的结果数量级变大,经历过softmax函数的归一化之后,后续反向传播的过程中梯度会很小,造成梯度消失。进行scaled能够缓解这种情况。

Multi-head Attention为什么要做scaled - 卷王李狗蛋的文章 - 知乎

目录

为什么会梯度消失的原因?

在self-attention中为什么要除以?

为什么要假设为均值为0,方差为1?

为什么在其他 softmax 的应用场景,不需要做 scaled?

为什么在分类层(最后一层),使用非 scaled 的 softmax?

注意力机制的softmax溢出怎么解决?


为什么会梯度消失的原因?

数量级对softmax得到的分布影响非常大。在数量级较大时,softmax将几乎全部的概率分布都分配给了最大值对应的标签。

点积后的结果数量级大会导致反向传播梯度变小。造成梯度消失,参数更新困难。

当输入g(x)函数的logits的数量级很大时,g(x)输出的是一个非常接近one-hot的向量[0,0,...1,...0,0]。

在self-attention中为什么要除以\sqrt{d_k}

方差越大也就说明,点积的数量级越大(以越大的概率取大值)。那么一个自然的做法就是把方差稳定到1,做法是将点积除以\sqrt{d_k}将方差控制为1,也就有效地控制了前面提到的梯度消失的问题

为什么要假设为均值为0,方差为1?

浅谈Transformer的初始化、参数化与标准化 - 科学空间|Scientific Spaces

在一般的教程中,推导初始化方法的思想是尽量让输入输出具有同样的均值和方差,通常会假设输入是均值为0、方差为1的随机向量,然后试图让输出的均值为0、方差为1。

初始化自然是随机采样的的,所以这里先介绍一下常用的采样分布。一般情况下,我们都是从指定均值和方差的随机分布中进行采样来初始化。其中常用的随机分布有三个:正态分布(Normal)、均匀分布(Uniform)和截尾正态分布(Truncated Normal)。

核心是让输入输出具有同样的均值和方差,保持相同的数据分布。挑正态分布可能因为常见,均值为0、方差为1。因为简单?

为什么在其他 softmax 的应用场景,不需要做 scaled?

transformer中的attention为什么scaled? - 小莲子的回答 - 知乎

为什么在分类层(最后一层),使用非 scaled 的 softmax?

因为木有两个随机变量相乘的情况,所以不存在点积后的结果数量级大会导致反向传播梯度变小!

注意力机制的softmax溢出怎么解决?

原文链接

transformer中的attention为什么scaled? - TniL的回答 - 知乎

transformer中的attention为什么scaled? - 小莲子的回答 - 知乎

浅谈Transformer的初始化、参数化与标准化 - 科学空间|Scientific Spaces

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值