【深度学习】网络结构(VGG-16和Inception)

InceptionV1是一种创新的深度学习网络结构,仅用22层和约500万参数实现6.7%的错误率。其特点包括用全局平均池化替代全连接层,大幅减少参数量;引入inception module,采用1x1,3x3,5x5卷积及池化后1x1卷积,增强特征提取多样性和减少过拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

详解深度学习之经典网络架构(四):VGG-Net

详解深度学习之经典网络架构(十):九大框架汇总(墙裂!!)

一文读懂物体分类AI算法:LeNet-5 AlexNet VGG Inception ResNet MobileNet

Google Inception

Google Inception是一个大家族,包括inceptionV1 inceptionV2 inceptionV3 inceptionV4等结构。它主要不是对网络深度的探索,而是进行了网络结构的改进。

> InceptionV1

inceptionV1是一个设计十分精巧的网络,它有22层深,只有500万左右的参数量,模型大小仅为20M左右,但错误率却只有6.7%。它的网络结构特点如下

1. 去除了最后的全连接层,而使用全局平均池化来代替。这是模型之所以小的原因。AlexNet和VGG中全连接几乎占据了90%的参数量。而inceptionV1仅仅需要1000个参数,大大降低了参数量

2. inception module的使用。借鉴与Network in Network的思想,提出了inception module的概念,允许通道并联来组合特征。其结构如下:

inception module分为并联的四路,分别为单独的1x1卷积,1x1并联3x3, 1x1并联5x5, 池化后1x1卷积。使用不同的卷积结构来提取不同特征,然后将他们组合在一起来输出。

使用了1x1,3x3,5x5等不同尺寸的卷积,增加了提取特征面积的多样性,从而减小过拟合。

使用3个3x1取代3x3卷积,in fact,任意nxn的卷积都可以通过1xn卷积后接nx1卷积来替代。

简单回顾:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值