详解深度学习之经典网络架构(十):九大框架汇总(墙裂!!)
一文读懂物体分类AI算法:LeNet-5 AlexNet VGG Inception ResNet MobileNet
Google Inception
Google Inception是一个大家族,包括inceptionV1 inceptionV2 inceptionV3 inceptionV4等结构。它主要不是对网络深度的探索,而是进行了网络结构的改进。
> InceptionV1
inceptionV1是一个设计十分精巧的网络,它有22层深,只有500万左右的参数量,模型大小仅为20M左右,但错误率却只有6.7%。它的网络结构特点如下
1. 去除了最后的全连接层,而使用全局平均池化来代替。这是模型之所以小的原因。AlexNet和VGG中全连接几乎占据了90%的参数量。而inceptionV1仅仅需要1000个参数,大大降低了参数量
2. inception module的使用。借鉴与Network in Network的思想,提出了inception module的概念,允许通道并联来组合特征。其结构如下:
inception module分为并联的四路,分别为单独的1x1卷积,1x1并联3x3, 1x1并联5x5, 池化后1x1卷积。使用不同的卷积结构来提取不同特征,然后将他们组合在一起来输出。
使用了1x1,3x3,5x5等不同尺寸的卷积,增加了提取特征面积的多样性,从而减小过拟合。
使用3个3x1取代3x3卷积,in fact,任意nxn的卷积都可以通过1xn卷积后接nx1卷积来替代。
简单回顾: