oracle解多次幂函数,多题一解 - osc_3qfoc6mk的个人空间 - OSCHINA - 中文开源技术交流社区...

本文通过实例解析了多个数学问题的变式处理,涉及直线与曲线相切、不等式恒成立、幂函数比较、集合关系以及函数性质的应用。使用平行线法、分离参数和分类讨论等技巧,展示了如何找到最优化解和参数范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

多题一解是思维训练的好素材。

直曲线相切

案例01【原题】直线$y=x$上的动点为$P$,函数$y=lnx$上的动点是$Q$,求$|PQ|$的最小值。

【变式】直线$y=x$上的点为$P(x,y)$,函数$y=lnx$上的点是$Q(m,n)$,求$\sqrt{(x-m)^2+(y-n)^2}$的最小值。

分析:采用平行线法,

设和直线$y=x$平行且和函数$y=lnx$相切的直线为$y=x+m$,

8c4b2128d4ec8621753edcb1f593f3fc.png

切点为$P_0(x_0,y_0)$,则有

$\begin{cases} y_0=x_{0}+ m \ y_0=lnx_0 \ f'(x_0)=\cfrac{1}{x_0}=1\end{cases}$;

从而解得$x_0=1,y_0=0,m=-1$

所以所求的点点距的最小值,就转化为切点$P_0(1,0)$到直线$x-y=0$的点线距,

$d=\cfrac{|1-0|}{\sqrt{1^2+1^2}}=\cfrac{\sqrt{2}}{2}$。

或者两条直线$y=x,y=x-1$的线线距$d=\cfrac{|1-0|}{\sqrt{1^2+1^2}}=\cfrac{\sqrt{2}}{2}$。课件地址

能成立问题

案例02【原题】已知函数$f(x)=x^2 +ax-2\ge 0$在区间 $[1,5]$上能成立,求参数$a$的取值范围。

【变式1】已知不等式$x^2 +ax-2\ge 0$在区间 $[1,5]$上有解,求参数$a$的取值范围。

【变式2】已知不等式$x^2 +ax-2\ge 0$在区间 $[1,5]$上解集不是空集,求参数$a$的取值范围。

【变式3】已知不等式$x^2 +ax-2\ge 0$在区间 $[1,5]$上至少有一个解,求参数$a$的取值范围。

【变式4】已知命题$p$:对任意$x\in [1,5]$,不等式$x^2 +ax-2< 0$在区间 $[1,5]$无实数解,是假命题,求参数$a$的取值范围。

【法1】:分离参数,得到$a≥\cfrac{2}{x}-x$在区间$[1,5]$上能成立,

转化为求新函数$\cfrac{2}{x}-x$在$[1,5]$上的最小值。

令$g(x)=\cfrac{2}{x}-x,g(x)=\cfrac{2}{x}-x$在区间 $[1,5]$上单调递减,

所以$g(x)_{min}=g(5)=-\cfrac{23}{5}$,所以$a≥-\cfrac{23}{5}$,

即$a$的取值范围是$[-\cfrac{23}{5},+\infty)$

【法2】:转化为求$x\in [1,5]$上的$f(x)_{max}\ge 0$,

对称轴是$x=-a$,针对$x=-a$和给定区间的位置关系分类讨论即可,较繁琐,

①当$-a\leq 1$时,即$a\ge -1$时,$f(x)$在区间$[1,5]$单调递增,

故$f(x)_{max}=f(5)=5a+23\ge 0$,即$a\ge -\cfrac{23}{5}$,

又由于$a\ge -1$,求交集得到$a\ge -1$;

②当$1

$f(x)_{max}=max{f(1),f(5)}$,

$f(1)=a-1$,$f(5)=5a+23$,

$f(5)-f(1)=4a+24\in [4,20]$,即$f(5)>f(1)$,

故$f(x)_{max}=f(5)=5a+23\ge 0$,即$a\ge -\cfrac{23}{5}$,

求交集得到,$-\cfrac{23}{5}\leq a

③当$-a\ge 5$时,即$a\leq -5$时,$f(x)$在区间$[1,5]$单调递减,

故$f(x)_{max}=f(1)=a-1\ge 0$,即$a\ge 1$,

求交集得到$a\in \varnothing$;

综上所述,得到$a\in [-\cfrac{23}{5},+\infty)$。

即$a$的取值范围是$[-\cfrac{23}{5},+\infty)$

【法3】:转化为不等式$f(x)=x^2 +ax-2≥0$在区间 $[1,5]$上有解,

解法基本同于法2,

①当$-a\leq 1$时,必须$f(5)\ge 0$,解得$a\ge -1$;

②当$1

③当$-a\ge 5$时,必须$f(1)\ge 0$,解得$a\in \varnothing$;

综上所述,得到$a\in [-\cfrac{23}{5},+\infty)$。

幂函数

案例03【源题】若$(2m+1)^{\frac{1}{2}}>(m^2+m-1)^{\frac{1}{2}}$,求实数$m$的取值范围。

分析:由于上述不等式依托的函数是$y=x^{\frac{1}{2}}$,在定义域$[0,+\infty)$上单调递增,

故有$\left{\begin{array}{l}{2m+1\ge 0①}\{m^2+m-1\ge 0②}\{2m+1>m^2+m-1③}\end{array}\right.$

解得$\left{\begin{array}{l}{m\ge -\cfrac{1}{2}①}\{m\ge\cfrac{\sqrt{5}-1}{2}或m\leq \cfrac{-\sqrt{5}-1}{2}②}\{-1

求交集得到,$\cfrac{\sqrt{5}-1}{2}\leq m<2$。故$m\in [\cfrac{\sqrt{5}-1}{2},2)$。

【变式1】【无奇偶性】若$(2m+1)^{\frac{1}{4}}>(m^2+m-1)^{\frac{1}{4}}$,求实数$m$的取值范围。

分析:求解过程同上,故$m\in [\cfrac{\sqrt{5}-1}{2},2)$。

【变式2】【无奇偶性】若$(2m+1)^{\frac{1}{2n}}>(m^2+m-1)^{\frac{1}{2n}}(n\in N^{*})$,求实数$m$的取值范围。

分析:求解过程同上,故$m\in [\cfrac{\sqrt{5}-1}{2},2)$。

【变式3】【抽象函数】若函数$f(x)$的定义域为$[0,+\infty)$,且满足对任意的$x_1,x_2\in [0,+\infty)$,都有$\cfrac{f(x_1)-f(x_2)}{x_1-x_2}>0(x_1\neq x_2)$,且满足$f(2m+1)>f(m^2+m-1)$,求实数$m$的取值范围。

分析:求解过程同上,故$m\in [\cfrac{\sqrt{5}-1}{2},2)$。

恒成立问题

案例04【原题】已知函数$f(x)=x^2 +ax-2\ge 0$在区间$[1,5]$上恒成立,求参数$a$的取值范围。

【变式】$\forall x\in [1,5]$,都能使得函数$f(x)=x^2 +ax-2\ge 0$成立,求参数$a$的取值范围。

【常规】法1:二次函数法,由于$\Delta=a^2+8>0$,故不需要考虑$\Delta<0$的情形,

只需要考虑对称轴$x=-\cfrac{a}{2}$和给定区间$[1,5]$的相对位置关系

当$-\cfrac{a}{2}\leq 1$时,即$a\geqslant -2$时,函数$f(x)$在区间$[1,5]$单调递增,

所以$f(x)_{min}=f(1)=1+a-2\geqslant 0$,解得$a\geqslant 1$,又因为$a\geqslant -2$,所以得到$a\geqslant 1$。

当$-\cfrac{a}{2}\ge 5$时,即$a\leqslant -10$ 时,函数$f(x)$在区间 $[1,5]$单调递减,

所以$f(x)_{min}=f(5)=25+5a-2\ge 0$,解得$a\ge -\cfrac{23}{5}$,

又因为$a\leq -10$,所以得到$a\in\varnothing$。

当$1

得到$a\in\varnothing$。(这种情形可以省略)

综上可得$a\geqslant 1。$即$a$的取值范围是$[1,+\infty)$

【通法】法2:【恒成立+分离参数法】两边同时除以参数$a$的系数$x$(由于$x\in [1,5]$,不等号方向不变),得到

$a\geqslant \cfrac{2}{x}-x$在区间 $[1,5]$上恒成立, 转化为求新函数“$\cfrac{2}{x}-x$”在$[1,5]$上的最大值。

这时我们一般是定义新函数,令$g(x)=\cfrac{2}{x}-x$,

则利用函数单调性的结论,可以看到$g(x)=\cfrac{2}{x}-x$在区间 $[1,5]$上单调递减,

所以$g(x)_{max}=g(1)=1$,所以$a\geqslant 1$,即$a$的取值范围是$[1,+\infty)$

集合关系

案例05【原题】若集合$B={x\mid m+1\leq x\leq 1-2m }$,集合$A={x\mid -2\leq x\leq 7}$,若$A\subsetneqq B$,求实数$m$的取值范围。

【变式1】给定命题$p:m+1\leq x\leq 1-2m$,命题$q:-2\leq x\leq 7$,已知$q$是$p$的充分不必要条件,求实数$m$的取值范围。

【变式2】给定命题$p:m+1\leq x\leq 1-2m$,命题$q:-2\leq x\leq 7$,已知$p$是$q$的必要不充分条件,求实数$m$的取值范围。

【变式3】给定命题$p:m+1\leq x\leq 1-2m$,命题$q:-2\leq x\leq 7$,已知$\neg p$是$\neg q$的充分不必要条件,求实数$m$的取值范围。

66306d453a9c10975895abf5077f5965.png

分析:自行画出草图可知,先列出条件$\begin{cases}&m+1\leq-2\&1-2m \ge 7\end{cases}$,解得$m\leq -3$,

接下来验证$m=-3$是否满足题意。

当$m=-3$时,$A=[-2,7]$,$B=[m+1,1-2m]=[-2,7]$,此时$A=B$,不满足题意,舍去,

故实数$m$的取值范围为${m\mid m

解后反思:本题目如上处理,则可以避免分类讨论;

函数性质综合

案例06已知函数$f(x)=ln(\sqrt{x^2+1}+x)$,且$f(x-1)+f(x)>0$,求$x$的取值范围;

分析:先求定义域,由于$\sqrt{x^2+1}\ge \pm \sqrt{x^2}$,故定义域为$(-\infty,+\infty)$,

又由于$f(-x)=ln(\sqrt{x^2+1}-x)$,故$f(x)+f(-x)=ln1=0$,故函数为奇函数。

当$x\in [0,+\infty)$时,$x^2\nearrow$,$1+x^2\nearrow$,$\sqrt{1+x^2}\nearrow$,$x+\sqrt{1+x^2}\nearrow$,

$y=ln(x+\sqrt{1+x^2})\nearrow$,则由奇函数可知在$(-\infty,+\infty)$上,$f(x)\nearrow$,

故由定义域为$R$,奇函数,单调递增,则由$f(x-1)+f(x)>0$,

得到$f(x-1)>-f(x)=f(-x)$,即$x-1>-x$,解得$x>\cfrac{1}{2}$,即$x\in (\cfrac{1}{2},+\infty)$。

【变式1】已知奇函数$f(x)$定义域为$R$,且单调递增,若$f(x-1)+f(x)>0$,求$x$的取值范围;

【变式2】已知定义在$R$上的函数$f(x)$满足$f(-x)+f(x)=0$,且在$x\in [0,+\infty)$上时,恒有$f'(x)\geqslant 0$成立,若$f(x-1)+f(x)>0$,求$x$的取值范围;

【变式3】已知定义在$R$上的函数$f(x)$图像关于原点对称,且在$x_1,x_2\in [0,+\infty)$上时,有$\cfrac{f(x_2)-f(x_1)}{x_2-x_1}>0(x_1\neq x_2)$成立,若$f(x-1)+f(x)>0$,求$x$的取值范围;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值