前言
多题一解是思维训练的好素材。
直曲线相切
案例01【原题】直线$y=x$上的动点为$P$,函数$y=lnx$上的动点是$Q$,求$|PQ|$的最小值。
【变式】直线$y=x$上的点为$P(x,y)$,函数$y=lnx$上的点是$Q(m,n)$,求$\sqrt{(x-m)^2+(y-n)^2}$的最小值。
分析:采用平行线法,
设和直线$y=x$平行且和函数$y=lnx$相切的直线为$y=x+m$,
切点为$P_0(x_0,y_0)$,则有
$\begin{cases} y_0=x_{0}+ m \ y_0=lnx_0 \ f'(x_0)=\cfrac{1}{x_0}=1\end{cases}$;
从而解得$x_0=1,y_0=0,m=-1$
所以所求的点点距的最小值,就转化为切点$P_0(1,0)$到直线$x-y=0$的点线距,
$d=\cfrac{|1-0|}{\sqrt{1^2+1^2}}=\cfrac{\sqrt{2}}{2}$。
或者两条直线$y=x,y=x-1$的线线距$d=\cfrac{|1-0|}{\sqrt{1^2+1^2}}=\cfrac{\sqrt{2}}{2}$。课件地址
能成立问题
案例02【原题】已知函数$f(x)=x^2 +ax-2\ge 0$在区间 $[1,5]$上能成立,求参数$a$的取值范围。
【变式1】已知不等式$x^2 +ax-2\ge 0$在区间 $[1,5]$上有解,求参数$a$的取值范围。
【变式2】已知不等式$x^2 +ax-2\ge 0$在区间 $[1,5]$上解集不是空集,求参数$a$的取值范围。
【变式3】已知不等式$x^2 +ax-2\ge 0$在区间 $[1,5]$上至少有一个解,求参数$a$的取值范围。
【变式4】已知命题$p$:对任意$x\in [1,5]$,不等式$x^2 +ax-2< 0$在区间 $[1,5]$无实数解,是假命题,求参数$a$的取值范围。
【法1】:分离参数,得到$a≥\cfrac{2}{x}-x$在区间$[1,5]$上能成立,
转化为求新函数$\cfrac{2}{x}-x$在$[1,5]$上的最小值。
令$g(x)=\cfrac{2}{x}-x,g(x)=\cfrac{2}{x}-x$在区间 $[1,5]$上单调递减,
所以$g(x)_{min}=g(5)=-\cfrac{23}{5}$,所以$a≥-\cfrac{23}{5}$,
即$a$的取值范围是$[-\cfrac{23}{5},+\infty)$
【法2】:转化为求$x\in [1,5]$上的$f(x)_{max}\ge 0$,
对称轴是$x=-a$,针对$x=-a$和给定区间的位置关系分类讨论即可,较繁琐,
①当$-a\leq 1$时,即$a\ge -1$时,$f(x)$在区间$[1,5]$单调递增,
故$f(x)_{max}=f(5)=5a+23\ge 0$,即$a\ge -\cfrac{23}{5}$,
又由于$a\ge -1$,求交集得到$a\ge -1$;
②当$1
$f(x)_{max}=max{f(1),f(5)}$,
$f(1)=a-1$,$f(5)=5a+23$,
$f(5)-f(1)=4a+24\in [4,20]$,即$f(5)>f(1)$,
故$f(x)_{max}=f(5)=5a+23\ge 0$,即$a\ge -\cfrac{23}{5}$,
求交集得到,$-\cfrac{23}{5}\leq a
③当$-a\ge 5$时,即$a\leq -5$时,$f(x)$在区间$[1,5]$单调递减,
故$f(x)_{max}=f(1)=a-1\ge 0$,即$a\ge 1$,
求交集得到$a\in \varnothing$;
综上所述,得到$a\in [-\cfrac{23}{5},+\infty)$。
即$a$的取值范围是$[-\cfrac{23}{5},+\infty)$
【法3】:转化为不等式$f(x)=x^2 +ax-2≥0$在区间 $[1,5]$上有解,
解法基本同于法2,
①当$-a\leq 1$时,必须$f(5)\ge 0$,解得$a\ge -1$;
②当$1
③当$-a\ge 5$时,必须$f(1)\ge 0$,解得$a\in \varnothing$;
综上所述,得到$a\in [-\cfrac{23}{5},+\infty)$。
幂函数
案例03【源题】若$(2m+1)^{\frac{1}{2}}>(m^2+m-1)^{\frac{1}{2}}$,求实数$m$的取值范围。
分析:由于上述不等式依托的函数是$y=x^{\frac{1}{2}}$,在定义域$[0,+\infty)$上单调递增,
故有$\left{\begin{array}{l}{2m+1\ge 0①}\{m^2+m-1\ge 0②}\{2m+1>m^2+m-1③}\end{array}\right.$
解得$\left{\begin{array}{l}{m\ge -\cfrac{1}{2}①}\{m\ge\cfrac{\sqrt{5}-1}{2}或m\leq \cfrac{-\sqrt{5}-1}{2}②}\{-1
求交集得到,$\cfrac{\sqrt{5}-1}{2}\leq m<2$。故$m\in [\cfrac{\sqrt{5}-1}{2},2)$。
【变式1】【无奇偶性】若$(2m+1)^{\frac{1}{4}}>(m^2+m-1)^{\frac{1}{4}}$,求实数$m$的取值范围。
分析:求解过程同上,故$m\in [\cfrac{\sqrt{5}-1}{2},2)$。
【变式2】【无奇偶性】若$(2m+1)^{\frac{1}{2n}}>(m^2+m-1)^{\frac{1}{2n}}(n\in N^{*})$,求实数$m$的取值范围。
分析:求解过程同上,故$m\in [\cfrac{\sqrt{5}-1}{2},2)$。
【变式3】【抽象函数】若函数$f(x)$的定义域为$[0,+\infty)$,且满足对任意的$x_1,x_2\in [0,+\infty)$,都有$\cfrac{f(x_1)-f(x_2)}{x_1-x_2}>0(x_1\neq x_2)$,且满足$f(2m+1)>f(m^2+m-1)$,求实数$m$的取值范围。
分析:求解过程同上,故$m\in [\cfrac{\sqrt{5}-1}{2},2)$。
恒成立问题
案例04【原题】已知函数$f(x)=x^2 +ax-2\ge 0$在区间$[1,5]$上恒成立,求参数$a$的取值范围。
【变式】$\forall x\in [1,5]$,都能使得函数$f(x)=x^2 +ax-2\ge 0$成立,求参数$a$的取值范围。
【常规】法1:二次函数法,由于$\Delta=a^2+8>0$,故不需要考虑$\Delta<0$的情形,
只需要考虑对称轴$x=-\cfrac{a}{2}$和给定区间$[1,5]$的相对位置关系
当$-\cfrac{a}{2}\leq 1$时,即$a\geqslant -2$时,函数$f(x)$在区间$[1,5]$单调递增,
所以$f(x)_{min}=f(1)=1+a-2\geqslant 0$,解得$a\geqslant 1$,又因为$a\geqslant -2$,所以得到$a\geqslant 1$。
当$-\cfrac{a}{2}\ge 5$时,即$a\leqslant -10$ 时,函数$f(x)$在区间 $[1,5]$单调递减,
所以$f(x)_{min}=f(5)=25+5a-2\ge 0$,解得$a\ge -\cfrac{23}{5}$,
又因为$a\leq -10$,所以得到$a\in\varnothing$。
当$1
得到$a\in\varnothing$。(这种情形可以省略)
综上可得$a\geqslant 1。$即$a$的取值范围是$[1,+\infty)$
【通法】法2:【恒成立+分离参数法】两边同时除以参数$a$的系数$x$(由于$x\in [1,5]$,不等号方向不变),得到
$a\geqslant \cfrac{2}{x}-x$在区间 $[1,5]$上恒成立, 转化为求新函数“$\cfrac{2}{x}-x$”在$[1,5]$上的最大值。
这时我们一般是定义新函数,令$g(x)=\cfrac{2}{x}-x$,
则利用函数单调性的结论,可以看到$g(x)=\cfrac{2}{x}-x$在区间 $[1,5]$上单调递减,
所以$g(x)_{max}=g(1)=1$,所以$a\geqslant 1$,即$a$的取值范围是$[1,+\infty)$
集合关系
案例05【原题】若集合$B={x\mid m+1\leq x\leq 1-2m }$,集合$A={x\mid -2\leq x\leq 7}$,若$A\subsetneqq B$,求实数$m$的取值范围。
【变式1】给定命题$p:m+1\leq x\leq 1-2m$,命题$q:-2\leq x\leq 7$,已知$q$是$p$的充分不必要条件,求实数$m$的取值范围。
【变式2】给定命题$p:m+1\leq x\leq 1-2m$,命题$q:-2\leq x\leq 7$,已知$p$是$q$的必要不充分条件,求实数$m$的取值范围。
【变式3】给定命题$p:m+1\leq x\leq 1-2m$,命题$q:-2\leq x\leq 7$,已知$\neg p$是$\neg q$的充分不必要条件,求实数$m$的取值范围。
分析:自行画出草图可知,先列出条件$\begin{cases}&m+1\leq-2\&1-2m \ge 7\end{cases}$,解得$m\leq -3$,
接下来验证$m=-3$是否满足题意。
当$m=-3$时,$A=[-2,7]$,$B=[m+1,1-2m]=[-2,7]$,此时$A=B$,不满足题意,舍去,
故实数$m$的取值范围为${m\mid m
解后反思:本题目如上处理,则可以避免分类讨论;
函数性质综合
案例06已知函数$f(x)=ln(\sqrt{x^2+1}+x)$,且$f(x-1)+f(x)>0$,求$x$的取值范围;
分析:先求定义域,由于$\sqrt{x^2+1}\ge \pm \sqrt{x^2}$,故定义域为$(-\infty,+\infty)$,
又由于$f(-x)=ln(\sqrt{x^2+1}-x)$,故$f(x)+f(-x)=ln1=0$,故函数为奇函数。
当$x\in [0,+\infty)$时,$x^2\nearrow$,$1+x^2\nearrow$,$\sqrt{1+x^2}\nearrow$,$x+\sqrt{1+x^2}\nearrow$,
$y=ln(x+\sqrt{1+x^2})\nearrow$,则由奇函数可知在$(-\infty,+\infty)$上,$f(x)\nearrow$,
故由定义域为$R$,奇函数,单调递增,则由$f(x-1)+f(x)>0$,
得到$f(x-1)>-f(x)=f(-x)$,即$x-1>-x$,解得$x>\cfrac{1}{2}$,即$x\in (\cfrac{1}{2},+\infty)$。
【变式1】已知奇函数$f(x)$定义域为$R$,且单调递增,若$f(x-1)+f(x)>0$,求$x$的取值范围;
【变式2】已知定义在$R$上的函数$f(x)$满足$f(-x)+f(x)=0$,且在$x\in [0,+\infty)$上时,恒有$f'(x)\geqslant 0$成立,若$f(x-1)+f(x)>0$,求$x$的取值范围;
【变式3】已知定义在$R$上的函数$f(x)$图像关于原点对称,且在$x_1,x_2\in [0,+\infty)$上时,有$\cfrac{f(x_2)-f(x_1)}{x_2-x_1}>0(x_1\neq x_2)$成立,若$f(x-1)+f(x)>0$,求$x$的取值范围;