转换onnx_ONNX简化节点和修改教程

本文介绍了如何将训练好的pytorch或tensorflow模型转换为ONNX格式,并通过onnx-simplifier工具进行节点简化,以便于在端侧部署如ncnn、mnn或使用tensorRT。提供了命令行工具使用方法和在线转换网站,同时给出了手动修改cast节点为identity的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在训练完深度学习的pytorch或者tensorflow模型后,有时候需要把模型转成 onnx,但是很多时候,很多节点比如cast节点,Identity 这些节点可能都不需要,我们需要进行简化,这样会方便我们把模型转成ncnn或者mnn等这些端侧部署的模型格式或者通过tensorRT进行部署。

方法1:使用 onnx-simplifier 进行精简

一个方法是使用 [onnx-simplifier](https://github.com/daquexian/onnx-simplifier)  进行精简。

安装其实很很简单,使用pip进行安装:

pip3 install onnx-simplifier

```

然后进行转换:

python3 -m onnxsim input_onnx_model output_onnx_model

另外,ONNX Simplifier 还提供了在线转换的网站,可以不必安装环境就能转换,[地址戳此](https://convertmodel.com)。

开箱即用,不需要任何安装。只需打开网页,选择ONNX作为输出格式,选择onnx简化器,然后选择要简化的模型即可。

6be2c0c788aa5c38e9cd62d7cf0902a5.png

方法2:手动修改节点

还有一个方法是手动修改节点,下面是一个例子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值