mysql 向量查找_AnalyticDB向量检索+AI 实战: 声纹识别

本文介绍了如何利用AnalyticDB搭建声纹比对系统,结合AI技术进行声纹识别,提升电话销售场景的安全性。通过创建插件、建表、创建索引、提取声纹特征,实现MySQL中的向量查找,以支持实时声纹核身,提高识别准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景

近年来,随着人工智能对传统行业的赋能改造,越来越多的基于人工智能的业务解决方案被提出来,声纹识别在保险行业中的身份认证便是一个很好的例子. 声纹识别是根据说话人发音的生理和行为特征,自动识别说话人身份的一种生物识别技术,对应在电话销售场景下,它主要解决以下安全问题:一方面,有不法分子窃取电话销售人员账号信息,非法获取客户个人信息资料并进行贩卖、泄露,严重侵犯了公民个人的信息隐私权,另一方面,部分行业从业人员利用一些规则漏洞,通过套保、骗保等非法手段实施金融诈骗. 针对这些安全问题,可以通过实时声纹认证加以解决,以电话销售人员为监管核心,利用每个人独一无二的声纹进行严密的个人身份认证,保证电话销售人员对接客户时是本人注册登录,规范电销人员行为,从源头上有效规避信息泄露、漏洞利用等风险.

2. 声纹识别原理

上图是端对端的深度学习训练和推理过程. 对比传统声纹识别模型,我们的模型在实际使用中优势明显,在用户远程身份验证场景,通过注册用户说一段话,即可轻松快速的确认注册用户身份,识别准确率达到95%以上,秒级响应,实时声纹核身. 下面简要介绍我们模型的特点.

2.0 度量学习

实验发现,在声纹识别中采用softmax进行网络训练 ,用余弦相似度的测试性能往往不如传统声纹识别模型,尤其是在鲁棒性上. 分析发现[6]基于softmax的分类训练,为了得到更小的loss,优化器会增大一些easy samples的L2 length,减小hard examples 的L2 length,导致这些样本并没有充分学习,特征呈现放射状,以MNIST识别任务为例,基于softmax学到的特征分布如图3(a)所示. 同类别特征分布并不聚拢,在L2 长度上拉长,呈放射状,且每个类别的间距并不大,在verification的任务中,会导致相邻的两个类别得分很高.

为了达到类内聚拢,类间分散的效果,我们研究了在图像领域中应用较为成功的几种softmax变种,包括AM-softmax[4],arcsoftmax[5]等,从图3(b)可以看到,基于margin的softmax,相

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值