运筹学线性规划单纯形法例题_【运筹学】单纯形法之大M法和两阶段法

本文介绍了运筹学线性规划中解决非标准形式问题的两种方法——大M法和两阶段法。大M法通过引入人工变量构造单位矩阵,而两阶段法则分别解决第一阶段的人工变量问题和第二阶段的原问题。文中给出了Matlab实现示例,并强调了当目标函数值为0时,原问题有基可行解,可进行第二阶段求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

39ae21502917c49d5adc00e1a00c583a.png

在上一篇文章中,

张敬信:【运筹学】单纯形法求解线性规划问题的Matlab实现​zhuanlan.zhihu.com
fe3d6c94c9cba44c1521a632f6cbbbaa.png

讨论了单纯形法求解线性规划问题,但是它需要约束系数矩阵包含一个单位矩阵,对应的变量指定为初始基变量。一般情况下,是不能保证这一点的,因此需要引入人工变量法,即添加人工变量构造出单位矩阵。

求解带有人工变量的线性规划问题,通常有两种方法:大M法和两阶段法。

一、大M法

例如,

77f7eac6dadbba97d03652f2afb74013.png

引入人工变量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值