清华大学计算机系刘斌,清华大学计算机科学与技术系导师简介:林闯

本文介绍了清华大学计算机科学与技术系的林闯教授,包括他的教育背景、社会兼职及研究领域等信息。林闯教授的研究方向主要包括计算机网络的服务质量和安全、控制系统模型、随机Petri网的理论和应用等方面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对考生而言,充分了解高校、专业以及师资情况是一项最基础、最关键的工作。以下是中公考研小编为大家整理的“清华大学计算机科学与技术系导师简介:林闯”的相关信息,希望对同学们有所帮助。

姓名:林闯

职称:教授

电话:62783596

邮箱:chlin@tsinghua.edu.cn

教育背景

工学学士 (计算机科学与技术), 清华大学, 中国, 1977;

工学硕士 (计算机科学与技术), 中国科学院, 中国, 1981;

工学博士 (计算机科学与技术),清华大学, 中国, 1994.

社会兼职

清华大学计算机科学与技术系: 主任 (2003-2007);

国际Petri网学术指导委员会: 委员 (2008-);

IFIP TC6 (Communication Systems): 中国代表 (2004-);

IEEE高级会员 (2004-);

中国计算机学会: 常务理事 (2004-);

中国计算机学会: Petri网专委会主任 (2005-);

ACM SIGCOMM Asia Workshop 2005: 大会主席 (2005);

IWQoS 2010: 大会主席 (2010).

研究领域

计算机网络的服务质量和安全控制

系统模型、模拟和性能评价

随机Petri网的理论和应用

并行和分布计算

内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习和Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度和稳定性。文档涵盖了从项目背景、目标意义、挑战解决方案、模型架构及代码示例,到具体的应用领域、部署应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建训练到性能评估的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB和深度学习基础知识的研发人员、数据科学家以及从事时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTMTransformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度和决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤和超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值