基于matlab的静电场边值,典型静电场场图解析解(含Matlab程序).pdf

本文探讨典型静电场问题的场图绘制方法,包括平行平面场及可归结为点电荷相互作用的三维静电场。对于二维静电场,采用复位函数方法,并给出Matlab绘图程序;对于点电荷产生的电场,根据电场线方程控制电场线分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

您所在位置:网站首页 > 海量文档

&nbsp>&nbsp高等教育&nbsp>&nbsp工学

a476e75ce57e4882405abe7b4456fc6b.gif

典型静电场场图解析解(含Matlab程序).pdf7页

本文档一共被下载:2377011b61454b208b34ad77b4c31088.gif次,您可全文免费在线阅读后下载本文档。

072ad097814a33d1ad18e33ca14a5a9e.png

9ec2792a743ebdf4575ee09a03c275ea.png

7af312d1be2cfc1e59f15880bb7a7e7a.png

5f207613e329ca76dc87c76d3ff77e64.png

adf7aa3071c520b8a2063089f549261c.png

下载提示

1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

2.该文档所得收入(下载+内容+预览三)归上传者、原创者。

3.登录后可充值,立即自动返金币,充值渠道很便利

本文部分内容发表于《电气电子教学学报》2012 年12 期。使用本文素材请引用:

陈德智. 典型静电场场图的解析解[J]. 电气电子教学学报, 2012, 06: 102-106.

典型静电场场图的解析解

陈德智 (dzhchen@mail.hust.edu.cn )

强电磁工程与新技术国家重点实验室(华中科技大学),湖北 武汉430074

摘要:场图是帮助理解电磁场概念、观察场的分布特点和寻求电磁场问题解决方案的有力工具,在电磁场教学与科研

中都有重要作用。本文讨论典型静电场问题的场图绘制方法,包括平行平面场(二维场)和可以归结为点电荷相互作用的三

维静电场两种类型。对于二维静电场,使用复位函数,其实部与虚部分别对应电位函数和通量函数,两个函数的等值线相互

正交,分别表示等位线和电场线。文中介绍了由电位求取复位函数并利用复位函数作图的方法,给出了使用Matlab 语言的

绘图程序。对于由一组共线的点电荷产生的电场,根据其电场线方程,利用电场线起始角可以方便地控制电场线的空间分布,

Matlab 实现也非常容易。本文给出的方法能够方便地精确绘制几乎所有常见的典型静电场问题场图,对于电磁场的教学与

科研有一定参考价值。因为简单,这些方法也显得别有趣,笔者在课堂上介绍这些内容时,很大地激发了学生的学习热情。

关键词:电磁场;场图;复位函数;点电荷;Matlab

电磁场分析中常常借助于电场线和等位线来 w f (z) (x, y) j(x, y) (1)

形象化地描绘电场的空间分布,这些图形称为场 在复平面上是解析的,则由解析函数的性质,

图。借助于场图能够使抽象的场看得见、想得清,  x y 和(x, y ) 都是Laplace 方程的解,且对应于

( , )

直观生动,因此充分利用场图是学习和理解电磁场  x y C 和(x, y ) D , 、D 为定值的两族曲

( , ) C

物理概念的有效途径[1,2] 。场图对于电磁场实际工程

线处处正交。

问题的求解也非常重要,它可以帮助观察场的分布

由于电位函数在无电荷区域满足Laplace 方程,

特征,理解电磁作用机理,寻找问题解决方案和确

因此可应用解析函数的上述特性分析二维静电场

定优化设计方向。能够从一个实际的电磁元件中勾 问题。如果以w 的实部表示电位函数,那么曲线

勒出电磁场的空间分布图像,是实现定性分析和定

 x y C 是等位线,与之正交的曲线(x, y ) D

( , )

量计算的基础。

则恰好表示电场线(E 线)。 称为通量函数,

一些典型的电磁场模型,如点电荷及其组合,

w   称为复位函数。当然,也可以反过来取

无限大平板,无限长圆柱等,虽然简单,却给出了 j

电磁场分布的基本图像;复杂的电磁场问题可以通 为电位函数, 为通量函数。

过这些基本元素的组合来获得定性的理解。因此, 二维静电场中,很大一类问题都可以通过保角

精确绘制这些场图是十分重要的[3,4] 。这些模型大都 变换法求得复位函数[5],但这不是本文关注的重点。

具备某种对称性,能够获得解析解。常见的模型主

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名:

验证码:

c9f2bced460b0329ba0aadbbc3f0fc71.png

匿名?

发表评论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值