层次聚类python_用python绘制层次聚类图

本文介绍了如何使用Python的sklearn和scipy库进行层次聚类,并详细展示了如何绘制一维数据的层次聚类树状图(Dendrogram)。主要内容包括sklearn.cluster.AgglomerativeClustering API的解析以及利用scipy.dendrogram调整x轴以显示实际数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

层次聚类(Hierarchical clustering)代表着一类的聚类算法,这种类别的算法通过不断的合并或者分割内置聚类来构建最终聚类。 聚类的层次可以被表示成树(或者树形图(dendrogram))。树根是拥有所有样本的唯一聚类,叶子是仅有一个样本的聚类。这里带大家用python绘制一维数据的层次聚类图。

工具准备

  • matplotlib
  • scipy
  • numpy
  • sklearn

sklean中的层次聚类

主要API解析

sklearn.cluster.AgglomerativeClustering(n_clusters=2(聚类数),

affinity='euclidean'(距离衡量标准“euclidean”, “l1”, “l2”, “manhattan”, “cosine”, or “precomputed”),

memory=None, connectivity=None, compute_full_tree='auto',

linkage='ward'(“ward”, “complete”, “average”, “single”), distance_threshold=None)

Ward 最小化所有聚类内的平方差总和。Maximumcomplete linkage 最小化成对聚类间最远样本距离。Average linkage 最小化成对聚类间平均样本距离值。Single linkage 最小化成对聚类间最近样本距离值。

代码:

2a106cecc656536920d4bf1980ed333d.png

用scipy中的dendrogram绘图

f3a2c943e05a0b92bac585322b966b7e.png

下面介绍如何更改x轴使其显示实际数据而不是索引:

da74cbd1785a78043965d10cd18ce97c.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值