对抗样本论文总结

本文综述了对抗样本在深度学习领域的研究进展,包括Karparthy的ImageNet分类器破解、Christian等人提出的对抗性示例特性、Ian Goodfellow对对抗样本的解释、Bengio团队在现实世界图像中发现的对抗性特性、Anh Nguyen等人提出的愚弄性示例,以及对抗样本的可转移性和黑盒攻击。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[1]Karparthy博客 Breaking Linear Classifiers on ImageNet

http://karpathy.github.io/2015/03/30/breaking-convnets/

 

[2]Christian等人在ICLR2014最先提出adversarial examples的论文Intriguing properties of neural networks

论文下载到本地的第3篇

 

[3]Ian Goodfellow对对抗样本解释的论文Explaining and Harnessing Adversarial Examples

论文下载到本地的第5篇

 

[4]最近Bengio他们组发文表示就算是从相机自然采集的图像,也会有这种特性Adversarial examples in the physical world

论文下载到本地第4篇

 

[5]Anh Nguyen等人在CVPR2015上首次提出Fooling Examples的论文Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
https://arxiv.org/pdf/1412.1897.pdf

下载为本地论文第18篇

 

[6]Delving into Transferable Adversarial Examples and Black-box Attacks

论文下载到本地的第17篇

对抗样本可转移性与黑盒攻击_学习笔记:https://blog.csdn.net/qq_35414569/article/details/82383788

 

转载于:https://www.cnblogs.com/Josie-chen/p/9957133.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值