5、AFM(Attention+FM)-----Attentional Factorization Machines:Learning the Weight of Feature Interactio...

本文介绍了一种结合Attention机制与因子分解机(FM)的模型——AttentionalFM(AFM)。AFM通过Attention学习特征交叉的权重,自动识别并增强重要特征交互的作用,减少不相关特征交叉带来的噪声,尤其在处理文本数据时能更精准地捕捉关键信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

1、摘要:

提出一个Attentional FM,Attention模型+因子分解机,其通过Attention学习到特征交叉的权重。因为很显然不是所有的二阶特征交互的重要性都是一样的,如何通过机器自动的从中学习到这些重要性是这篇论文解决的最重要的问题,

比如:作者举了一个例子,在句子"US continues taking a leading role on foreign payment transparency"中,除了"foreign payment transparency",其它句子明显与财经新闻无关,它们之间的交叉作用可认为对主题预测是一种噪音。

2、FM

3、注意力机制

AFM模型架构:

 

 

转载于:https://www.cnblogs.com/Lee-yl/p/9643098.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值