Diffie-Hellman密钥交换协议工作过程

本文介绍了一种安全的密钥交换协议——Diffie-Hellman算法。该算法由Whit Diffie和Martin Hellman于1976年提出,允许两个通信实体在不安全的信道上协商出共享密钥。文中详细描述了DH协议的工作流程,并解释了其安全性依赖于计算离散对数的难度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

see also :http://www.worldlingo.com/ma/enwiki/en/Diffie-Hellman_key_exchange/

Diffie-Hellman密钥交换协议工作过程

密钥协商原理

群组密钥协商(Group Key Agreement), 这种方法是基于分布式的思想,它的特点是:1)群组的多个成员一起参与密钥生成 2) 群组中的密钥是由每个成员提供的参数以及密钥生成算法共同决定的 3) 群组中任何成员均不能事先确定密钥。

有几种流行的的群组密钥协商及分配方法,包括CKDCentralized Group Key Distribution),BDBurmester-Desmedt),STRSteer et al.),GDHGroup Diffie-Hellman)和TGDHTree-Based Group Diffie-Hellman)。

Diffie-Hellman

1976年,Whit Diffie和Martin Hellman共同提出了Diffie-Hellman[1]算法(简称DH),这是一种两方密钥交换协议,用于两个对等实体安全地协商共享密钥。DH算法实质是一个通信双方进行密钥协定的协议,它的安全性基于有限域上计算离散对数的困难性。 

 

Diffie-Hellman密钥交换协议如下: 

 

首先,AliceBob双方约定2个大整数ng,其中1<g<n,这两个整数无需保密,然后,执行下面的过程

1)   Alice随机选择一个大整数x(保密),并计算X=gx mod n 

 

2)   Bob随机选择一个大整数y(保密),并计算Y=gy mod n 

 

3)   Alice把X发送给B,B把Y发送给ALICE 

 

4)   Alice计算K=Yx mod n 

 

5)   Bob计算K=Xy mod n 

 

K即是共享的密钥。 

       监听者Oscar在网络上只能监听到XY,但无法通过XY计算出xy,因此,Oscar无法计算出K= gxy mod n。 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值