dfs 与 dijkstra 总结

本文深入解析了Dijkstra算法,用于解决加权图中从起始点到所有节点的最短路径问题。通过实例和详细步骤,展示了算法的核心逻辑和应用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dijkstra:

//寻求加权图起始点到各个节点的最短路径

for i <- 1:n

         do distance[i] <- INF;

distance[0] <- 0;//起始节点距离为0

 

minDistance <- INF;//最短距离

presentNode <- -1;

 

for i <- 1:n

         if !known[i] && distance[i]<minDistance

                   presentNode <- i;

                   minDistance <-distance[i];

 

if presentNode == -1//未找到最短距离且未知节点

         return;

 

known[presentNode] <- 1;//将该节点标为已知

for i<- 1:n

         if adjacent(i, presentNode)//节点相邻

                   if distance[i] > distance[presentNode] + length(i, presentNode)

                   //更新节点距离

                            distance[i] = distance[presentNode] + length(i, presentNode);

////////////////////////////////////////////////////////////////////////////////

Dfs

//深度优先搜索

known[presentNode] <- 1;

 

if presentNode == destinationNode

         return;

 

if distance > destinationDistace//加距离超出或者类似的条件,剪枝

         return;

 

for i <- 1:n

         if adjacent(presentNode, i) && known[i]

                   DFS(i);

                   known[i] = 0;

转载于:https://www.cnblogs.com/luojiahu/p/3893068.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值