<机器学习实战>读书笔记--朴素贝叶斯

本文深入探讨了朴素贝叶斯法的基本原理及其在分类任务中的应用,详细解释了贝叶斯定理与特征条件独立假设如何支撑起这一经典算法,并通过具体公式展示了如何计算在特定条件下事件发生的概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法,

最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)

2.朴素贝叶斯公式

P(B|A)的意思是在A事件的情况下,发生B事件的概率。

3.朴素贝叶斯模型

a是独立的特征属性集合:

      

用来计算不同的独立特征的条件概率

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值