sklearn 相似度矩阵_第十三课:矩阵的谱分解(一)

本文探讨线性代数中的矩阵谱分解,重点在于相似矩阵和单纯矩阵的概念。介绍了如何通过特征值和特征向量将矩阵分解为对角矩阵或Jordan标准形,阐述了幂等矩阵的定义,并给出矩阵谱分解的定理和例子。证明了矩阵可对角化与特征值的关系,虽然某些证明较为复杂,但强调了这一理论在矩阵理论中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2d22e17c68b64b33bef558bad8372a4c.png

抢座大战没能抢过别人,上课走神没有好好听讲,内心的苦涩难以言表,恐怕这一节的内容写

不好了。

d0097354dc2628f389a4ccc3ca9f443b.png

不说了,下面进入正题。

在线性代数中,我们已经讨论过一个方阵的特征值和特征向量的问题,已经发现特征值有着非常重要的作用。由于相似矩阵有相同的特征值,因而人们总是希望在相似矩阵中找到结构最简单的矩阵,就是对角矩阵或Jordan标准形矩阵。下面,我们将矩阵的特征值,进一步寻求利用简单矩阵来表示已知矩阵,即矩阵的谱分解

在具体讲解本节内容之前,我们先一起来回忆一下相关概念。我们在特征值与特征向量这一节中曾经介绍过谱、Jordan标准形以及几何重数和代数重数的概念。如果忘记了,可以点开这个链接再回忆一下。这些概念是本节课程的基础,我们下面具体介绍本节的内容。

单纯矩阵的谱分解

8e481629aafc89e19dad097ed8fa5245.png

02c97e66aac1c99273c2b1c28e0472ee.png

显然,

,特征值
的代数重复度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值