计算机webapp论文,校傲江湖(校园社交移动端Web应用)

本文介绍了名为“校傲江湖”的一款以大学生为中心,利用GIS技术开发的移动社交应用。该应用包括爱分享、找朋友、Hi周末和社团活动等功能,旨在提供愉悦的交流平台,增强大学生社交体验。应用设计遵循实用性、可扩展性、安全性和操作可行性原则,采用HTML5、Bootstrap、AngularJS、ASP.Net MVC和EntityFramework等技术实现,并具备路径导航功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

内容简介:

校傲江湖(校园社交移动端Web应用),毕业论文,共57页,20676字,附任务书、外文翻译、开题报告、答辩语文稿、源码等。

摘要

近年来,随着移动互联网的持续的高速发展和智能手机等终端设备的日益普及,使用智能移动终端设备上网的用户明显大幅度增长,移动互联网的应用也日渐丰富多彩,这一现象在高校大学生中尤为普遍。大学生们除了在日常生活中正常的互动交流外,很多时候都是在移动终端上进行交流互动。针对这一现象,开发了一大学生为中心,一GIS为原理开发了一款大学WEB移动端的社交应用。

本应用主要服务于大学生社交的应用。主要有爱分享、找朋友、Hi周末(周末去哪玩)、社团活动的功能。这是一款基于GIS开发的移动web应用,主要是以大学生为中心,通过发布一些自己自己或朋友身边有趣的一些事,这样我们就可以以一种愉悦、有趣的方式进行交流互动,即娱乐的自己,又可以娱乐大众,扩大我们的交友圈,让我们的大学生活充满更多的欢快。

关键词:社交 GIS WEB移动端 大学生

目录

中文摘要I

AbstractII

1绪论1

1.1课题背景1

1.2国内外社交网站的现状1

1.3地理信息系统概述2

1.3.1地理信息系统简介2

1.3.2地理信息系统的组成2

1.3.3地理信息系统的应用3

1.3.4地理信息系统在国内的发展趋势4

1.4本章小结4

2移动社交网络的研究5

2.1研究的目的5

2.2研究的内容及基本路线5

2.3研究的对象6

2.4研究的方法6

2.4.1文献法6

2.4.2分类法6

2.4.3访谈法6

2.4.4问卷法7

2.4.5观察法7

2.4.6服务设计研究方法7

2.4.7社会网络分析方法7

2.5本章小结8

3应用的总体设计9

3.1设计目标9

3.2设计基本原则9

3.2.1实用性与先进性结合的原则9

3.2.2可扩展性的原则9

3.2.3安全性的原则9

3.2.4操作可行性的原则9

3.3应用的功能设计10

3.4.1设计数据库需遵循的三大完整性规则10

3.4.2防止数据库设计打补丁的方法是“三少原则”11

3.4.3校傲江湖数据库的设计内容及描述11

3.5运行环境的部署13

3.5.1 IIS的安装与配置13

3.5.2将项目部署到IIS服务器18

3.6实现应用的技术19

3.6.1 html5技术19

3.6.2 bootstrap19

3.6.3 AngularJS框架20

3.6.4 ASP.Net MVC21

3.6.5 Entity Framework21

3.6.6百度地图API21

3.7本章小结22

4应用的功能实现23

4.1功能的概括23

4.2注册及登录23

4.2.1注册功能23

4.2.2登录功能25

4.2.3核心代码25

4.3 用户信息的展示及修改27

4.3.1用户信息的展示27

4.3.2用户信息的修改27

4.3.3实现的核心代码28

4.3.4展示用户信息的意义28

4.4爱分享29

4.4.1爱分享动态信息的展示29

4.4.2爱分享动态信息的发布30

4.4.3查看附近学校分享的动态信息31

4.4.4查看与我有关的动态信息31

4.4.5功能核心代码31

4.4.6作用及意义33

4.5找朋友34

4.5.1找朋友信息的展示34

4.5.2找朋友信息的发布35

4.5.3与我有关36

4.5.3互动交流37

4.5.4路径导航功能37

4.5.5核心代码38

4.5.6作用及意义38

4.6 Hi周末39

4.6.1分类展示学校周围好玩的地方39

4.6.2发布邀请39

4.6.3发布邀请场所的热力分布图40

4.6.4发布邀请信息的展示41

4.6.5路径导航功能41

4.6.6核心代码展示42

4.6.7作用及意义42

4.7社团活动42

4.7.1社团活动信息的展示42

4.7.2社团活动信息的发布44

4.7.3查看附近学校的社团活动信息44

4.7.4社团活动的路径导航功能45

4.7.5与我有关46

4.7.6作用及意义46

4.8本章小结46

5结论及展望48

5.1结论48

5.2展望48

致谢50

参考文献51

相关说明:

1. 如您下载的资料不止一份,建议您注册成为本站会员。会员请登录后下载。

2. 会员购买金币50元以下,0.7元/个,50元以上,0.5元/个。具体请看:下载与付款。

3. 会员48小时内下载同一文件,不重复扣金币。

4. 下载后请用WinRAR或WinZIP解压缩后使用。

5. 如仍有其他下载问题,请看常见问题解答。

下载地址:

内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习和Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度和稳定性。文档涵盖了从项目背景、目标意义、挑战与解决方案、模型架构及代码示例,到具体的应用领域、部署与应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建与训练到性能评估的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB和深度学习基础知识的研发人员、数据科学家以及从事时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTM与Transformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度和决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤和超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值