典型深度学习训练流程

博客地址:https://www.cnblogs.com/zylyehuo/

用最通俗的“做菜”比喻来讲讲一个典型的深度学习训练流程:

image

1. 准备食材(数据准备)

  • 食材:时尚服饰图片 + 标签(比如“鞋子”“衬衫”)

  • 切菜:把图片分成「训练集」和「测试集」,一次处理一小盘(batch),这样不会下锅(显存)爆炸。

2. 准备厨具(模型搭建)

  • 平底锅(Flatten 层):把 28×28 的图片“摊平”,变成一长条面团(向量)。

  • 锅铲(Linear 层):把这条面团分成 10 份(对应 10 种服饰),然后尝出“味道”好坏(logits)。

3. 调味料(损失函数)

  • 味道评分(CrossEntropyLoss):把锅铲出来的 10 份“口味”跟真实标签做对比,打分(损失值)。

  • 分数越低越好:代表锅铲做得越对味。

4. 火候控制(优化器)

  • 火力大小(学习率 lr=0.1):火太大易糊,太小不熟,用 SGD 小步烹饪。

  • 翻炒(反向传播 + 参数更新):不断根据味道评分微调锅铲角度(网络权重),让菜越炒越香。

5. 厨艺验收(度量函数)

  • 训练时当场尝一口(计算训练集准确率 & 损失)

  • 出锅后请客再尝(用测试集评估准确率,保证不过拟合,也能做给新客人吃)

6. 厨房监控(可视化)

  • 打分板(Accumulator):记录每盘尝到的口味分数与正确率

  • 实时大屏(Animator):把每一轮炒菜后的分数/准确率用折线图画出来——

  • 蓝线:味道评分(损失)要一路下降

  • 紫线:训练客人给的分(训练准确率)要一路上升

  • 绿线:测试客人给的分(测试准确率)也要上升并稳定

7. 循环烹饪(训练轮数)

  • 第 1 轮:先培训小助手(train_epoch_ch3)做第一遍炒菜 → 当场尝一口 → 记录分数

  • 第 2 轮:再培训一遍 → 再尝 → …

  • 重复 N 轮,直到菜品(模型)足够香。

原创作者: zylyehuo 转载于: https://www.cnblogs.com/zylyehuo/p/18958513
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值