“P=NP?” 通常被认为是计算机科学最重要的问题。有一个叫 Clay Math 的研究所,甚至悬赏 100 万美元给解决它的人。可是我今天要告诉你的是,这个问题其实远远不是那么的重要。
我并不是第一个这样认为的人。在很早的时候,就有一位数学家毫不客气的指出,P=NP? 是个愚蠢的问题,并且为了嘲笑这个问题,专门在 4 月 1 号写了一篇“论文”,称自己证明了 P=NP。我身边有一些非常聪明的人,他们基本也都不把这问题当回事。如果我对他们讲这些东西,恐怕已经是老生常谈,所以我只是在这里科普一下。
首先,你要先搞清楚什么是“P=NP?” 为此,你必须先了解一下什么是“算法复杂度”。为此,你又必须先了解什么是“算法”。
你可以简单的把“算法”想象成一台机器,就跟绞肉机似的。你给它一些“输入”,它就给你一些“输出”。比如,绞肉机的输入是肉末,输出是肉渣。牛的输入是草,输出是奶(或者牛粪)。“加法器”的输入是两个整数,输出是这两个整数的和。“算法理论”所讨论的问题,就是如何设计这些机器,让它们更加有效的工作。就像是说如何培育出优质的奶牛,吃进相同数量的草,更快的产出更多的奶。
世界上的计算问题,都需要“算法”经过一定时间的工作(也叫“计算”),才能得到结果。计算所需要的时间,往往跟“输入”的大小有关系。如果你的奶牛吃了很多草,它就需要很长时间才能把它们变成奶。这种草和奶的转换速度,通常被叫做“算法复杂度”。
算法复杂度通常被表示为一个函数 f (n),其中 n 是输入的大小。比如,如果你的算法复杂度为 n^2,那么当输入 10 个数据的时候,它需要 100 个单元的时间才能完成计算。当输入 100 个数据的时候,它需要 10000 个单元的时间才能完成计算。当输入 1000 个数据的时候,它需要 1000000 个单元的时间。简单吧。
所谓的“P时间”,就是“Polynomial time”,多项式时间。简而言之,就是说这个复杂度函数 f (n) 是一个多项式。多项式你该知道是什么吧?不知道的话,就翻一下中学数学课本。
“P=NP?”中的“P”,就是指所有这些复杂度为多项式的算