python按照日期筛选数据_pandas 按日期范围筛选数据的实现

本文介绍了如何利用Python的Pandas库按照日期范围筛选数据,包括将日期字符串转换为date类型,以及多种筛选数据的方法,如直接比较、列表生成式、str.startswith和datetime属性等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pandas 是 python 中一个功能强大的库,这里就不再复述了,简单介绍下用日期范围筛选 pandas 数据。

日期转换

用来筛选的列是 date 类型,所以这里要把要筛选的日期范围从字符串转成 date 类型

比如我的数据包含列名为 trade_date,从 20050101 - 20190926 的数据,我要筛选出 20050606 - 20071016 的数据,那么,先如下转换数据类型:

s_date = datetime.datetime.strptime('20050606', '%Y%m%d').date()

e_date = datetime.datetime.strptime('20071016', '%Y%m%d').date()

数据筛选

非常简单,一行代码就搞定了:

df = df[(df['tra_date'] >= s_date) & (df['tra_date'] <= e_date)]

注意事项

多个筛选条件并存时,不能用 and 连接,需要用单个 & 符号。

s_date <= df['trade_date'] <= e_date 等同于 and

pandas提取某段时间范围数据的五种方法

import pandas as pd

#读取文件

df = pd.read_csv('./TianQi.csv')

#获取九月份数据的几种方法

#方法一 使用行索引切片,['2019/9/1':'2019/9/30'],缺点是要求日期必须是连续的。为了方便查看取前5条,以下其他方法均取前5条,由于未进行排序,顺序会有差异

df.set_index('日期',inplace=True)

print(df['2019/9/1':'2019/9/30'].head()) #或者print(df.loc['2019/9/1':'2019/9/3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值