c语言求数组最长升序子序列,求数组中最长递增子序列的解决方法

本文介绍了如何用C语言求解一维数组中的最长递增子序列问题,包括两种解法:动态规划的扩展算法和二分查找优化的算法,时间复杂度分别为O(N^2)和O(N log K)。

存储扩展算法n2编程c 写一个时间复杂度尽可能低的程序,求一个一维数组(N个元素)中的最长递增子序列的长度。

例如:在序列1,-1,2,-3,4,-5,6,-7中,其最长的递增子序列为1,2,4,6 或者 -1,2,4,6。(编程之美P198-202)

分析与解法根据题目的要求,求一维数组中的最长递增子序列,也就是找一个标号的序列b[0],b[1],…,b[m](0 <= b[0] < b[1] < … < b[m] < N),使得array[b[0]]

解法一根据无后效性的定义我们知道,将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态来说,它以前各阶段的状态无法直接影响它未来的决策,而只能间接地通过当前的这个状态来影响。换句话说,每个状态都是历史的一个完整总结。

同样的,仍以序列1,-1,2,-3,4,-5,6,-7为例,我们在找到4之后,并不关心4之前的两个值具体是怎样,因为它对找到6没有直接影响。因此,这个问题满足无后效性,可以通过使用动态规划来解决。

可以通过数字的规律来分析目标串:1,-1,2,-3,4,-5,6,-7。

使用i来表示当前遍历的位置

当i=1时,显然,最长的递增序列为(1),序列长度为1.

当i=2是,由于-1<1。因此,必须丢弃第一个值后重新建立串。当前的递增序列为(-1),长度为1。

当i=3时,由于2>1,2>-1。因此,最长的递增序列为(1,2),(-1,2),长度为2。在这里,2前面是1还是-1对求出后面的递增序列没有直接影响。(但是在其它情况下可能有影响)

依此类推之后,我们得出如下的结论。

假设在目标数组array[]的前i个元素中,最长递增子序列的长度为LIS[i]。那么,

LIS[i+1]=max{1,LIS[k]+1},  array[i+1]>array[k],  for any k <= i

即如果array[i+1]大于array[k],那么第i+1个元素可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值