java 好友推荐 算法_基于jsp的好友推荐-JavaEE实现好友推荐 - java项目源码

本文介绍了一个使用jsp、servlet、pojo和mysql实现的JavaEE好友推荐系统,适用于课程设计和大作业。系统采用mvc设计模式,包括登录注册、权限管理、用户管理和好友推荐信息管理等功能。开发环境为Jdk1.8、Eclipse或IntelliJ IDEA,数据库为mysql5.6以上,依赖于javascript、css、jsp和servlet等技术。数据库设计是系统关键,项目提供源码、论文、sql数据库、答辩ppt等资源。

基于jsp+servlet+pojo+mysql实现一个javaee/javaweb的好友推荐, 该项目可用各类java课程设计大作业中, 好友推荐的系统架构分为前后台两部分, 最终实现在线上进行好友推荐各项功能,实现了诸如用户管理, 登录注册, 权限管理等功能, 并实现对各类好友推荐相关的实体进行管理。

该好友推荐为一个采用mvc设计模式进行开发B/S架构项目,并采用分层架构对项目进行架构, 分为pojo+action+service, 其中pojo表明该系统的各类数据库表对应的实体, 在对好友推荐进行详细的需求分析后与数据库设计后, 设计实现了如下模块, 即登录模块,权限管理模块, 用户管理模块,好友推荐信息管理模块等。并通过java抽象类对其实现

开发环境

java环境: Jdk1.8

Ide: Eclipse EE或者jetbrains Idea

数据库: mysql5.6以上

依赖框架:javascript, css, jsp, servlet, filter

系统需求分析与流程图

一般而言, 此类的javaweb课程设计大作业都比较简单, 主要目的在于掌握基础的web开发知识, 所以在实现该好友推荐的课程设计的时候, 需要首先收集其他的好友推荐产品分析, 主要精力用于完成数据库表的设计, 以及基于mvc模式进行代码编写, 页面可以简单的利用bootstrap进行搭建, 进而完成好友推荐各个模块的开发

数据库课程设计

数据库设计是整个好友推荐系统能否正常运转的核心, 合理的数据库设计直接影响到好友推荐是否能够正常运行, 本系统采用mysql数据库作为数据存储, 引擎采用innoddb

系统演示视频

运行截图

d01198a72ae1fbc0b17d99c5eb17e7cb.png

基于jsp的好友推荐-登陆功能界面

475921b56145d840400a7d4741aac589.png

基于jsp的好友推荐-前台首页

705a113ddbb1d4ede5362485041da7af.png

基于jsp的好友推荐-后台信息管理页面

800fb59c7ade4555436aa58ae5c1791f.png

好友推荐系统架构图

f8346e782f0ddfc3399bc7feecae9153.png

注意事项

该基于jsp的好友推荐项目自带源码, 论文, sql数据库, 答辩ppt, 中期检查报告

项目首页登陆地址 https://localhost:8080/login.jsp

项目后台陆地址 https://localhost:8080/admin/login.jsp

测试用户 cswork 密码 123456

测试管理员 admin 密码 admin

功能列表

好友推荐系统登陆模块, 实现好友推荐系统的登陆注册权限角色用户的增删改查

好友推荐用户管理模块, 实现好友推荐系统的信息管理与增删改查

前台信息管理模块, 面向普通用户, 实现普通用户对好友推荐的录入 修改 删除 自定义查询

超级管理员管理, 实现后台管理员对好友推荐系统的各个模块管理功能, 各个子模块高内聚低耦合

项目完整可用,配合压缩包内数据库可直接运行使用。 eclipse+mysql5.7+jdk1.8 功能:推荐引擎利用特殊的信息过滤(IF,Information Filtering)技术,将不同的内容(例如电影、乐、书籍、新闻、图片、网页等)推荐给可能感兴趣的用户。通常情况下,推荐引擎的实现是通过将用户的个人喜好与特定的参考特征进行比较,并试图预测用户对一些未评分项目的喜好程度。参考特征的选取可能是从项目本身的信息中提取的,或是基于用户所在的社会或社团环境。 根据如何抽取参考特征,我们可以将推荐引擎分为以下四大类: • 基于内容的推荐引擎:它将计算得到并推荐给用户一些与该用户已选择过的项目相似的内容。例如,当你在网上购书时,你总是购买与历史相关的书籍,那么基于内容的推荐引擎就会给你推荐一些热门的历史方面的书籍。 • 基于协同过滤的推荐引擎:它将推荐给用户一些与该用户品味相似的其他用户喜欢的内容。例如,当你在网上买衣服时,基于协同过滤的推荐引擎会根据你的历史购买记录或是浏览记录,分析出你的穿衣品位,并找到与你品味相似的一些用户,将他们浏览和购买的衣服推荐给你。 • 基于关联规则的推荐引擎:它将推荐给用户一些采用关联规则发现算法计算出的内容。关联规则的发现算法有很多,如 Apriori、AprioriTid、DHP、FP-tree 等。 • 混合推荐引擎:结合以上各种,得到一个更加全面的推荐效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值