python将坐标数据标准化_python – Scikit-learn:如何水平标准化行值?

博客围绕Python将坐标数据标准化展开,代码读取csv文件,原代码输出规范化值的新csv文件是按垂直值标准化,现需求是水平标准化。给出解决方法,即对数据进行转置操作,对转置结果标准化后再转置回来。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我想将水平值而不是垂直值标准化.代码读取代码后提供的csv文件,并输出具有规范化值的新csv文件.如何使其水平标准化?鉴于以下代码:

#norm_code.py

#normalization = x-min/max-min

import numpy as np

from sklearn import preprocessing

all_data=np.loadtxt(open("c:/Python27/test.csv","r"),

delimiter=",",

skiprows=0,

dtype=np.float64)

x=all_data[:]

print('total number of samples (rows):', x.shape[0])

print('total number of features (columns):', x.shape[1])

minmax_scale = preprocessing.MinMaxScaler(feature_range=(0, 1)).fit(x)

X_minmax=minmax_scale.transform(x)

with open('test_norm.csv',"w") as f:

f.write("\n".join(",".join(map(str, x)) for x in (X_minmax)))

test.csv

1 2 0 4 3

3 2 1 1 0

2 1 1 0 1

解决方法:

您可以简单地操作转置,并对结果进行转置:

minmax_scale = preprocessing.MinMaxScaler(feature_range=(0, 1)).fit(x.T)

X_minmax=minmax_scale.transform(x.T).T

标签:python,numpy,scikit-learn

来源: https://codeday.me/bug/20190609/1201767.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值