探索机器学习中的相似性:最近邻分类器
1 引言
机器学习领域中,相似性和距离度量是构建分类器的关键概念。在许多实际应用中,我们经常需要衡量两个对象之间的相似性,以判断它们是否属于同一类别。最近邻分类器(Nearest-Neighbor Classifiers)就是基于这一理念的一种分类方法。它通过寻找与待分类样本最相似的训练样本,来预测未知样本的类别。本文将详细介绍最近邻分类器的工作原理、应用场景、优点和局限性,并探讨如何优化其性能。
2 最近邻规则
2.1 k-最近邻规则
k-最近邻(k-Nearest Neighbor, k-NN)是一种常用的非参数分类算法。其核心思想是:对于一个新的样本点,计算它与训练集中所有样本点的距离,然后选取距离最近的k个邻居,根据这些邻居的类别投票决定新样本的类别。以下是k-NN的基本步骤:
- 选择k值 :k值的选择至关重要,过小可能导致过拟合,过大则可能引入噪声。
- 计算距离 :常用的距离度量包括欧氏距离、曼哈顿距离等。
- 选择邻居 :根据计算出的距离,选择距离最近的k个邻居。
- 投票决定类别 :统计这k个邻居中每个类别的频率,类别频率最高的即为新样本的预测类别。
2.2 示例说明
假设我们有一个二维数据集,包含两类样本点(红色和蓝色),现在要对一个新的样本点(绿色)进行分类。我们可以使用k-NN算法来完成这一任务。