correl函数相关系数大小意义_协方差与相关系数

协方差是衡量变量X与Y联动关系的指标,正相关意味着同步变化,负相关则表示反向变化。相关系数是协方差标准化后的结果,用于量化线性关系的强度,其值介于-1到1之间,1表示完全正相关,-1表示完全负相关,0表示不相关。相关系数只能反映线性关系,对于非线性关系可能不准确。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

协方差(Covariance)定义为:

ec224713644f97a17366ed39e6488381.png

Cov(X,X)=Var(X)
协方差是对X与Y之间联动关系的一种测度,即测量X与Y的同步性。当X与Y同时出现较大值或者较小值时,COV>0,二者正相关。若X出现较大值时Y出现较小值,COV<0,二者负相关。该相关关系并不意味着因果关系

计算方式:

9a523d7f01b0ccf0dd41b00501195c5c.png

E为期望算子,

为总体平均值。

从该式中我们可以发现,COV的大小与X、Y的大小有关。为了无量纲化,要对其进行标准化。就有了相关系数的概念。

相关系数定义为:

7b9c474271ca36fe99aa3f0f4c770d6a.png

就是协方差除了XY各自的标准差,这样才能刻画XY之间联动性的强弱。

这里需要注意,相关系数应该叫线性相关系数,它只能反映出线性关系。

为何只能是线性关系的测度?

证明:

给出一个线性函数,Y=a+bX (b

,X的方差存在)

898b41283698a0fff231b12b31cf1df3.png

则,

27e4b3eee327342b89e533e962d76a33.png

所以,当X与Y完全线性的时候,总有相关系数为1或者为-1.

扩展到一般线性模型:Y=a+bX+

其中,

同理可证,

e5ac8d1699d2c65a1885096ef00dde57.png

这里,相关系数与1之间的偏离程度就受

的影响。

因此,其测度的只是一种线性关系,并且绝对值不会超过1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值