PCA降维:机器学习的特征提取与数据简化技术

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:PCA(主成分分析)是一种统计方法,通过线性变换将高维数据转换为一组线性无关的表示,旨在最大化数据的方差并降低数据复杂度。在机器学习中,PCA用于特征选择和数据可视化,可显著减少计算量和存储需求。本概述将引导您理解PCA降维的六个关键步骤,优点和局限性,并简要介绍其他降维技术。
机器学习之PCA降维.zip

1. 主成分分析(PCA)概念

1.1 PCA定义和应用背景

主成分分析(Principal Component Analysis, PCA)是一种统计方法,它利用正交变换将一组可能相关的变量转换为一组线性不相关的变量,这些变量被称为主成分。PCA常被用于数据的降维处理,通过这种方式可以简化数据的复杂性,同时尽量保留原始数据的特征信息。在机器学习和数据分析领域,PCA作为数据预处理的工具,能够帮助提升后续分析的效率和模型的性能。

1.2 PCA的工作原理

PCA的核心工作原理是通过找到数据的协方差矩阵,计算其中的特征值和特征向量。其中,特征值的大小代表了对应特征向量方向上的数据方差,较大的特征值表示该方向上包含了更多的信息。通过选择贡献最大的几个特征向量(即主成分),我们就可以将原始数据投影到这些特征向量构成的新空间上,从而实现降维。

1.3 PCA的应用领域

PCA的应用范围广泛,包括但不限于以下领域:
- 数据压缩 :通过减少数据中的特征数量来减少存储和计算资源的需求。
- 可视化 :将高维数据转换到二维或三维空间,以便更直观地展示数据的结构。
- 噪声过滤 :去除数据中的噪声成分,突出主要信号特征。
- 特征提取 :从原始数据中提取重要的特征,用于提高后续分析或模型训练的性能。

PCA的强大之处在于它不仅是一种降维工具,而且可以作为一种探索性数据分析的手段,帮助我们发现数据中的重要结构和模式。在接下来的章节中,我们将深入探讨PCA的数学基础、数据预处理步骤、特征值和特征向量的求解过程,以及如何在实际应用中构建投影矩阵和执行降维操作。

2. 数据预处理步骤

数据预处理是数据分析和机器学习过程中不可或缺的一步。在进行主成分分析(PCA)之前,数据的预处理尤其重要,因为它直接影响到后续分析的准确性和效率。本章旨在介绍在应用PCA之前,数据预处理的具体步骤,包括数据清洗、数据标准化、归一化、去除噪声和异常值、处理缺失数据等。

数据清洗

在数据预处理中,数据清洗是清除数据集中不必要的、错误的和不一致数据的过程。数据清洗可能包括处理重复记录、纠正错误、删除无用的或不相关的数据。正确的数据清洗对于后续的分析步骤至关重要。

数据标准化和归一化

数据标准化和归一化是改变数据的尺度使之适应特定的算法或需求。标准化是指使数据的均值为零,标准差为一,通常用于要求数据具有单位方差的情况。归一化则是将数据缩放到一个固定范围,如0到1。在PCA中,通常更倾向于使用标准化。

from sklearn.preprocessing import StandardScaler

# 假设 X 是我们待处理的数据集,每一列代表一个特征
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

在上述代码中,我们使用了scikit-learn库中的 StandardScaler 对数据集 X 进行了标准化处理。通过 fit_transform 方法,首先拟合数据(计算均值和标准差),然后转换数据到零均值和单位方差。

去除噪声和异常值

在数据集中,噪声和异常值可能会影响分析结果。去除噪声和异常值可以使用统计方法,如箱型图分析、标准差阈值法等。异常值通常被定义为远离均值的点。

import numpy as np

# 计算均值和标准差
mean = np.mean(X_scaled, axis=0)
std_dev = np.std(X_scaled, axis=0)

# 定义异常值阈值,例如超过3个标准差的点可以被认为是异常值
threshold = 3
outliers = np.where(np.abs(X_scaled - mean) > threshold * std_dev)

# 移除异常值
X_cleaned = np.delete(X_scaled, outliers, axis=0)

在代码示例中,我们计算了标准化数据的均值和标准差,并定义了一个阈值,超过此阈值的数据点被视为异常值。之后,使用 np.delete 函数从数据集中移除这些异常值。

处理缺失数据

数据集中的缺失值可能会导致分析过程中出现问题。处理缺失数据的方法包括删除含有缺失值的记录或使用某种方法填充缺失值,比如均值、中位数或众数填充。选择哪种方法取决于数据集的特点和分析需求。

from sklearn.impute import SimpleImputer

# 创建一个SimpleImputer对象,使用均值填充缺失值
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')

# 对数据集X进行缺失值填充
X_imputed = imputer.fit_transform(X)

以上代码使用了 SimpleImputer 类来处理数据集 X 中的缺失值,这里选择使用均值作为填充值。在实际应用中,可能需要根据数据集的分布和后续分析的需要选择最合适的填充策略。

通过上述一系列预处理步骤,数据集被清洗和格式化,为PCA等机器学习模型的高效运行提供了坚实的基础。下一章我们将介绍PCA的核心数学原理和如何求解特征值和特征向量。

3. 特征值和特征向量求解

3.1 协方差矩阵的理解

在主成分分析(PCA)中,协方差矩阵是一个核心概念,它描述了数据集中各个变量之间的线性关系。协方差矩阵展示了每个特征与其余特征之间的协方差,可以理解为变量之间协同变动的程度和方向。

设数据集的矩阵表示为 ( X ) ,其中每一行表示一个观测数据点,每一列表示一个变量。协方差矩阵 ( C ) 可以通过以下公式计算得出:

[ C = \frac{1}{n-1} X^T X ]

其中,( X^T ) 是 ( X ) 的转置矩阵,( n ) 是观测数据点的数量。如果数据已经被中心化(即每列的均值为0),则矩阵 ( X^T X ) 就是协方差矩阵。中心化是为了消除数据均值对协方差的影响。

3.1.1 协方差矩阵的作用

  • 协方差矩阵的对角线元素是各变量的方差,而非对角线元素是变量间的协方差。
  • 对于PCA而言,协方差矩阵的特征值和特征向量将用于提取主成分,这些主成分对应于数据集的最大方差方向。
  • 对于高度相关的数据集,协方差矩阵将揭示这些相关性,并且PCA可以用来去除这种冗余。

3.2 特征值和特征向量的计算

3.2.1 特征值和特征向量的定义

对于一个方阵 ( A ),如果存在非零向量 ( v ) 和标量 ( \lambda ),使得 ( A v = \lambda v ),那么 ( \lambda ) 就称为矩阵 ( A ) 的特征值,对应的 ( v ) 就是对应的特征向量。特征值可以揭示矩阵某些属性的放大或缩小程度,特征向量则是指向这些属性方向的基。

3.2.2 计算步骤

为了找到协方差矩阵 ( C ) 的特征值和特征向量,我们需要解以下特征方程:

[ \det(C - \lambda I) = 0 ]

其中,( \det ) 表示矩阵的行列式,( I ) 是单位矩阵,( \lambda ) 是需要求解的特征值。求解特征方程通常涉及复杂的数学计算,通常借助计算工具来完成。

% MATLAB 代码示例:求解协方差矩阵的特征值和特征向量
C = cov(X); % 假定 X 是中心化后的数据矩阵
[V, D] = eig(C); % 计算特征值和特征向量

在上述 MATLAB 代码中, eig 函数会返回特征值矩阵 D 和对应的特征向量矩阵 V 。特征值矩阵 D 是对角矩阵,对角线上的元素就是特征值,而特征向量矩阵 V 的列是对应的特征向量。

3.2.3 特征值的物理意义

特征值描述了数据在对应特征向量方向上的方差大小。在PCA中,我们希望保留方差最大的方向,因为这些方向代表了数据最多的变异性。

  • 对于PCA来说,较大特征值对应的特征向量通常被保留,因为它们代表了数据最主要的变异方向。
  • 相对小的特征值可以被认为是噪声或数据的较小变化,可以被舍弃以达到降维的目的。

3.3 求解过程中的数学方法和技巧

3.3.1 特征值分解

特征值分解(Eigendecomposition)是解决上述特征方程的一种方法。对于协方差矩阵 ( C ),分解为:

[ C = VDV^T ]

其中,( V ) 是特征向量组成的矩阵,( D ) 是特征值组成的对角矩阵,( V^T ) 是 ( V ) 的转置。这个公式展示了数据在新的特征向量基础上的表示。

3.3.2 奇异值分解(SVD)

尽管特征值分解在理论上适用于任意矩阵,但在实际计算中,奇异值分解(SVD)对于数值稳定性和鲁棒性更优。对于任意矩阵 ( A ),SVD可以写为:

[ A = U\Sigma V^T ]

其中,( U ) 和 ( V ) 是正交矩阵,其列分别是左特征向量和右特征向量,( \Sigma ) 是一个对角矩阵,其对角线元素是奇异值,对应于 ( A^TA ) 的特征值的平方根。

在PCA中,如果我们令 ( A = X^T ),那么 ( V ) 矩阵的列就是协方差矩阵的特征向量。

3.3.3 特征值和特征向量的正交性

特征向量具有正交性,意味着不同特征向量之间是线性独立的。这一点对于PCA至关重要,因为PCA依赖于正交变换来消除数据的冗余。

3.4 案例演示

假设我们有一个数据集 X ,包含多个观测值和多个特征。我们希望使用PCA进行降维,并保留最关键的信息。以下是使用Python中的 numpy matplotlib 库来进行PCA分析的过程:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA

# 创建一个示例数据集
X = np.array([[2.5, 2.4], [0.5, 0.7], [2.2, 2.9], [1.9, 2.2], [3.1, 3.0], [2.3, 2.7]])

# 使用sklearn的PCA模块计算协方差矩阵、特征值和特征向量
pca = PCA(n_components=2)
pca.fit(X)
eig_values = pca.explained_variance_
eig_vectors = pca.components_

# 打印特征值和特征向量
print("特征值:", eig_values)
print("特征向量:\n", eig_vectors)

# 可视化原始数据和主成分
plt.scatter(X[:, 0], X[:, 1], label='Original Data')
for i in range(2):
    plt.arrow(pca.mean_[0], pca.mean_[1], eig_vectors[i, 0], eig_vectors[i, 1], color='red', width=0.02, label=f'Component {i+1}')
plt.legend()
plt.title('PCA Feature Vectors')
plt.xlabel('X1')
plt.ylabel('X2')
plt.show()

在上述Python代码中,我们首先创建了一个小的数据集,并使用了 PCA 类来找到数据集的主成分。通过 fit 方法得到特征值和特征向量,其中特征值表示各个主成分的方差大小,而特征向量则表示这些主成分的方向。最后,我们绘制了原始数据点和主成分向量,以直观地展示PCA的结果。

通过这个案例,可以更深入地理解PCA的工作原理和它在数据降维中的作用。特征值和特征向量是PCA中降维操作的关键,它们帮助我们确定了数据集最重要的变化方向。

4. 特征值排序和特征向量选择

4.1 特征值的意义与特征向量的选取

特征值在PCA中扮演着至关重要的角色。每一个特征值对应一个特征向量,而特征值的大小决定了相应特征向量的重要性。在数学上,特征值表示的是原始数据在特征向量方向上的方差。通常来说,方差大的方向代表了数据变化的主要方向,因此,我们倾向于选择那些对应较大特征值的特征向量,因为它们保留了更多的数据信息。

4.1.1 如何根据特征值排序选择特征向量

特征值的排序通常按照从大到小的顺序进行。排序后,我们可以根据实际需求选择前k个最大的特征值对应的特征向量。选择多少个特征向量,通常取决于以下两个因素:

  1. 解释的方差比例 :一般来说,我们希望选定的特征向量能够解释大部分的方差。因此,我们会计算每个特征值占总特征值之和的比例,并累加这些比例,直到达到一个阈值(例如95%)。如果前k个特征值占总方差的比例超过了这个阈值,那么我们就选择前k个特征向量。

  2. 累计贡献率 :这是指前k个特征值占所有特征值之和的比例,它代表了这些特征向量在总方差中所占的比重。累计贡献率通常由一个称为“Scree图”的图表来表示,我们可以直观地看到随着特征值数量增加,累计贡献率的变化趋势。

4.1.2 特征值与特征向量的计算

在实践中,特征值和特征向量的计算可以通过矩阵运算来完成。假设我们有一个数据集的协方差矩阵C,我们可以使用以下步骤来计算特征值和特征向量:

  1. 计算协方差矩阵的特征值和特征向量。这通常可以通过求解特征方程 |C - λI| = 0 实现,其中 λ 是特征值, I 是单位矩阵。

  2. 特征值分解协方差矩阵,可以得到特征值矩阵 Λ 和特征向量矩阵 V

  3. 对特征值进行排序,同时根据特征值对应的特征向量也进行排序。

以下是使用Python的NumPy库来计算特征值和特征向量的示例代码:

import numpy as np

# 假设cov_matrix是数据集的协方差矩阵
cov_matrix = np.array([[1.7, -1.3], [-1.3, 1.7]])

# 计算特征值和特征向量
eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)

# 将特征值和特征向量按特征值大小排序
eigenvalues_sorted = np.argsort(eigenvalues)[::-1]
sorted_eigenvectors = eigenvectors[:, eigenvalues_sorted]

# 打印结果
print("特征值排序: ", eigenvalues_sorted)
print("对应的特征向量: \n", sorted_eigenvectors)

上述代码首先计算了协方差矩阵的特征值和特征向量,然后根据特征值的大小进行了排序,并给出了排序后的特征向量。

4.1.3 代码逻辑解读

  • np.array([[1.7, -1.3], [-1.3, 1.7]]) 创建了协方差矩阵。
  • np.linalg.eig 函数用来计算矩阵的特征值和特征向量。
  • np.argsort 函数用来获取特征值数组排序后的索引,然后使用[::-1]来将其逆序,即从大到小。
  • sorted_eigenvectors 对应于排序后的特征值的特征向量。

4.2 确定主成分数量

确定保留多少个主成分(即选择多少个特征向量)是降维的关键步骤。在本小节中,我们将讨论如何根据累计贡献率来确定主成分的数量。

4.2.1 累计贡献率的计算

累计贡献率可以通过以下公式计算:

累计贡献率 = (前k个特征值之和) / (所有特征值之和)

选择的主成分数量应该保证累计贡献率达到一个可接受的水平。例如,在许多应用中,我们会希望保留95%以上的信息,也就是说,我们要找到最小的k值,使得:

(前k个特征值之和) / (所有特征值之和) >= 0.95

4.2.2 累计贡献率图(Scree图)的应用

Scree图是一种图形化的工具,它可以帮助我们决定选择多少个主成分。Scree图是按顺序画出特征值的散点图,横坐标是特征值的序号,纵坐标是特征值的大小。在Scree图中,我们会寻找“弯曲点”,即在该点之后,特征值下降的趋势变得较为平缓。这样的点通常标志着“主成分”和“次成分”的分界。选择在此之前的特征值对应的特征向量作为主成分,可以保证保留大部分的信息。

以下是使用Python的matplotlib库来生成Scree图的示例代码:

import matplotlib.pyplot as plt

# 绘制Scree图
plt.figure(figsize=(8, 5))
plt.bar(range(1, len(eigenvalues) + 1), eigenvalues[eigenvalues_sorted], alpha=0.7)
plt.xlabel('主成分序号')
plt.ylabel('特征值')
plt.title('Scree图')
plt.grid(True)
plt.show()

上述代码绘制了一个Scree图,其中x轴表示主成分序号,y轴表示特征值。

4.2.3 代码逻辑解读

  • plt.figure 创建了一个图形窗口。
  • plt.bar 创建了一个柱状图,其中x轴是主成分的序号,y轴是对应的特征值。
  • plt.xlabel plt.ylabel plt.title 分别用于设置x轴标签、y轴标签和图形标题。
  • plt.grid(True) 用来添加网格线。

4.3 特征值和特征向量选择策略

在实际应用中,我们可能会遇到不同的场景,因此需要选择合适的策略来决定保留多少主成分。

4.3.1 策略1:固定方差比例

一种常用的方法是固定一个方差比例,比如95%或99%,然后计算达到这个比例所需的主成分数量。这种方法适用于对信息保留量有明确要求的场景。

4.3.2 策略2:基于领域知识的决定

在某些情况下,领域知识可以帮助我们决定保留多少主成分。例如,如果我们知道数据集中的主要成分通常由某些已知的因素决定,我们可能会选择与这些因素对应的主成分。

4.3.3 策略3:基于模型性能的决定

如果我们的目标是提高机器学习模型的性能,那么可以通过交叉验证等方法,评估在不同主成分数量下模型的性能,然后选择使模型性能最佳的主成分数量。

4.3.4 策略4:基于可视化的需求

有时候,我们进行PCA分析是为了数据可视化。在这种情况下,我们可以选择2或3个主成分,因为这些是最容易可视化的数量。可视化不仅可以帮助我们理解数据的结构,还可以辅助我们进行其他决策。

4.4 案例:如何选择主成分数量

在本小节中,我们将通过一个具体案例来演示如何选择主成分的数量。

4.4.1 案例背景

假设我们有一个包含100个样本和10个特征的数据集。我们的目标是对这些数据进行降维,以便于进一步分析或可视化。

4.4.2 数据预处理

在进行PCA之前,首先对数据进行预处理,包括标准化、去除噪声和异常值等步骤。预处理后,我们得到了一个清洗后的数据集。

4.4.3 特征值与特征向量的计算

接下来,我们计算数据集协方差矩阵的特征值和特征向量,并进行排序。

4.4.4 确定主成分数量

我们根据累计贡献率绘制Scree图,找出合适的主成分数量。

# 假定已经计算得到的特征值
eigenvalues = np.array([4.0, 2.0, 1.5, 1.0, 0.8, 0.7, 0.5, 0.3, 0.2, 0.1])

# 计算累计贡献率
cumulative_variance = np.cumsum(eigenvalues) / np.sum(eigenvalues)

# 绘制Scree图
plt.figure(figsize=(8, 5))
plt.plot(range(1, len(cumulative_variance) + 1), cumulative_variance, 'bo-', linewidth=2)
plt.xlabel('主成分序号')
plt.ylabel('累计贡献率')
plt.title('累计贡献率图')
plt.grid(True)
plt.show()

# 输出累计贡献率
for i in range(1, len(cumulative_variance) + 1):
    print(f"主成分 {i} 的累计贡献率为: {cumulative_variance[i-1]:.2f}")

4.4.5 代码逻辑解读

  • 上述代码假定已知的特征值,并计算了累计贡献率。
  • np.cumsum 用于计算累计和。
  • plt.plot 用于绘制折线图,表示累计贡献率的变化。
  • 循环打印每个主成分的累计贡献率。

4.4.6 决策

通过查看Scree图和累计贡献率,我们可以决定选择多少个主成分。例如,如果累计贡献率达到95%时,需要前3个主成分,那么我们就可以选择保留这3个主成分。

4.5 小结

在本章中,我们深入探讨了PCA中特征值排序和特征向量选择的过程。首先解释了特征值和特征向量的重要意义,并通过计算实例加深了理解。接着,我们介绍了累计贡献率的概念,并通过Scree图来辅助决策。最后,我们讨论了选择主成分数量的不同策略,并通过一个具体案例演示了整个决策过程。这些方法和步骤对于有效地进行PCA分析至关重要。

5. 投影矩阵构建和降维操作

5.1 构建投影矩阵

在确定了需要保留的主成分之后,接下来的重要步骤是构建投影矩阵。投影矩阵是由选定特征向量组成的矩阵,用于将原始数据映射到新的特征空间。具体操作如下:

首先,假设我们已经确定了前m个主成分(特征向量),我们将这些特征向量按列排列形成一个(n \times m)的矩阵,记为P:

P = [v1, v2, ..., vm]

其中,(v1, v2, …, vm)是标准正交基向量,且(m < n)。投影矩阵P的每列都是一个主成分,且经过归一化处理。

在Python中,这可以通过NumPy库实现,如下代码展示了如何构建投影矩阵:

import numpy as np

# 假设V为特征向量矩阵,我们从中选择前m列构建投影矩阵P
m = 2  # 选择保留的主成分数
P = V[:, :m]

5.2 降维操作

降维操作涉及将原始数据集X通过投影矩阵P进行转换,得到降维后的数据集Y。这个过程可以用数学公式表示为:

Y = X * P

这里,X为原始数据矩阵,每个样本为一行,每个特征为一列。Y是降维后的数据集,其行数与X相同,列数为选定的主成分数量m。

降维操作的Python代码实现如下:

# 假设X为原始数据矩阵,P为投影矩阵
Y = np.dot(X, P)

5.3 降维后的数据应用

降维后的数据Y可以用于机器学习模型的训练和评估。由于Y的维数较低,这将大大降低模型训练的时间和计算资源消耗。同时,降维后的数据也有利于模型的可视化和解释。

以下是使用降维数据进行模型训练和评估的流程:

  1. 将数据集分为训练集和测试集。
  2. 应用PCA降维技术,构建投影矩阵P并转换训练集和测试集。
  3. 使用转换后的数据训练机器学习模型。
  4. 在测试集上评估模型性能。

以下是一个简单的示例代码:

from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# 数据预处理
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 应用PCA降维
pca = PCA(n_components=2)
X_train_pca = pca.fit_transform(X_train)
X_test_pca = pca.transform(X_test)

# 训练和评估模型
model = LogisticRegression()
model.fit(X_train_pca, y_train)
predictions = model.predict(X_test_pca)
accuracy = accuracy_score(y_test, predictions)

print(f"Model accuracy after PCA: {accuracy}")

降维后的数据还可以用于数据可视化,例如通过绘制散点图来观察数据在新的特征空间中的分布情况。

5.4 数据重构(可选)

数据重构是指通过降维数据反向推导出原始数据的过程。虽然重构不可能完全恢复原始数据(因为已经丢失了一些信息),但是可以得到一个近似表示。

重构过程可以通过以下公式完成:

X_reconstructed = Y * P.T

其中,Y是降维后的数据集,P.T是投影矩阵的转置,X_reconstructed是重构后的数据集。在Python中,这可以通过简单的矩阵乘法实现:

# 重构数据集
X_reconstructed = np.dot(Y, P.T)

重构的数据集X_reconstructed将尽可能地逼近原始数据集X,但通常会有一些误差。这些误差的大小可以用来评估降维过程中信息的损失程度。

5.5 案例演示

让我们通过一个实际案例来演示整个降维和重构过程:

假设我们有一个数据集X,包含100个样本,每个样本有100个特征。我们想要将这个数据集降维到2个特征以用于可视化。

首先,我们将使用scikit-learn库中的PCA模块来实现降维:

from sklearn.datasets import make_classification
from sklearn.decomposition import PCA

# 生成一个具有100个样本和100个特征的分类数据集
X, y = make_classification(n_samples=100, n_features=100, random_state=42)

# 应用PCA降维到2个主成分
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

# 将降维后的数据集用于模型训练和评估(此处略过)

然后,我们可以尝试重构原始数据:

X_reconstructed = pca.inverse_transform(X_pca)

# 计算原始数据和重构数据的差异
difference = np.sum(np.abs(X - X_reconstructed))

print(f"重构数据与原始数据的差异:{difference}")

在实际案例中,我们会发现重构数据与原始数据之间的差异很小,说明PCA在保留数据主要特征方面做得很好。

通过这个案例,我们可以看到PCA的降维和重构过程能够有效地减少数据的维度,同时保留大部分原始信息,这对于数据可视化、特征提取等场景非常有用。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:PCA(主成分分析)是一种统计方法,通过线性变换将高维数据转换为一组线性无关的表示,旨在最大化数据的方差并降低数据复杂度。在机器学习中,PCA用于特征选择和数据可视化,可显著减少计算量和存储需求。本概述将引导您理解PCA降维的六个关键步骤,优点和局限性,并简要介绍其他降维技术。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值