折交叉验证法是一种用于评估机器学习模型性能的方法。它通过将训练数据划分为若干个互斥的子集,并在每个子集上训练模型,再在剩余的子集上测试模型,来对模型进行评估。这样可以避免因为数据划分不合理而导致模型泛化能力低下的问题。折交叉验证法常用于比较不同的机器学习算法,或者调整超参数以优化模型性能。
折交叉验证法
最新推荐文章于 2023-09-08 14:24:25 发布
折交叉验证法是一种用于评估机器学习模型性能的方法。它通过将训练数据划分为若干个互斥的子集,并在每个子集上训练模型,再在剩余的子集上测试模型,来对模型进行评估。这样可以避免因为数据划分不合理而导致模型泛化能力低下的问题。折交叉验证法常用于比较不同的机器学习算法,或者调整超参数以优化模型性能。