折交叉验证法

折交叉验证法是机器学习中用于评估模型性能的重要方法,通过将数据集划分为多个互斥子集,依次训练和测试模型,以确保模型泛化能力。这种方法常用于比较不同算法和调整超参数,以优化模型的总体表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

折交叉验证法是一种用于评估机器学习模型性能的方法。它通过将训练数据划分为若干个互斥的子集,并在每个子集上训练模型,再在剩余的子集上测试模型,来对模型进行评估。这样可以避免因为数据划分不合理而导致模型泛化能力低下的问题。折交叉验证法常用于比较不同的机器学习算法,或者调整超参数以优化模型性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值