我问的是上面那段读写文件的程序,如何加入cache的设置

本文介绍了在Python中使用functools模块的lru_cache装饰器进行缓存优化,特别针对文件读写操作进行了实例演示。通过设置缓存大小,实现函数调用结果的高效复用,减少资源消耗。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要在 Python 中使用缓存,你可以使用 functools 模块中的 lru_cache 装饰器。这个装饰器可以自动在函数调用中使用缓存,并且可以指定缓存的大小。

下面是一个例子,展示了如何在读写文件的函数中使用 lru_cache 装饰器:

from functools import lru_cache

@lru_cache(maxsize=32)
def read_file(file_name):
    with open(file_name, 'r') as f:
        return f.read()

@lru_cache(maxsize=32)
def write_file(file_name, data):
    with open(file_name, 'w') as f:
        f.write(data)

在上面的代码中,我们使用了 lru_cache 装饰器来修饰 read_filewrite_file 函数。我们还指定了缓存的大小为 32。这意味着,函数的调用结果会被缓存在最多 32 个条目的字典中。当缓存满了,最少使用的条目会被淘汰。

注意,在使用 lru_cache 装饰器时,你需要确保函数的返回值是可哈希的。否则,装饰器会抛出一个 TypeError 异常。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值